Abstract:
A method of ultrasound flow metering includes applying a first and second pulse train to an ultrasound transducer pair (T1, T2) positioned for coupling ultrasonic waves therebetween. Responsive to the first pulse train applied to T1, T1 transmits an ultrasonic wave received as received ultrasonic wave (R12) by T2 after propagating through fluid in a pipe. Responsive to the second pulse train applied to T2, T2 transmits an ultrasonic wave received as received ultrasonic wave by (R21) T1 after propagating through the fluid. During the pulse trains, R12 and R21 build up in amplitude to provide excitation portions. The pulse trains are terminated, so that R12 and R21 decay as a damped free oscillation. Windowing is applied to R12 and R21 to generate windowed portions. A signal delay between t12 and t21 (ΔTOF) is calculated using only windowed portions, and a fluid flow is calculated from the ΔTOF.
Abstract:
A transceiver device combination includes a first ultrasound transducer and a processor chip including a central processing unit (CPU). A memory is coupled to the CPU including stored ultrasound communications software for rendering the processor chip a target device for an ultrasound probe driven via a host computing device having a second ultrasound transducer for together performing ultrasonic debugging of the processor chip. The transceiver device combination includes (i) a transmit path including an ultrasound driver having an input driven by an output of the CPU, where an output of the ultrasound driver is coupled to drive an input of the first ultrasound transducer to transmit ultrasound signals and (ii) a receive path including analog signal processing circuitry that couples an output of the first ultrasound transducer responsive to received ultrasound signals from the ultrasound probe to an input of the CPU.
Abstract:
An optical position sensing system is disclosed. The system includes a substrate having a surface. A plurality of photodetectors are at multiple locations across the surface, each of the plurality of photodetectors providing detector pulse signals in response to receiving the light. The system further includes a processor that determines a phase shift between the transmitted light pulse signals and the respective detector pulse signals and applies a multi-path resolution operation to distinguish between the detector pulse signals representing the transmitted light pulse signals and those representing reflected light pulse signals. The processor also calculates a distance of a transmitting device from each of the photodetectors based on the determined phase shift and the multi-path resolution operation and calculates a multi-dimensional position of the transmitting device relative to the substrate based on the calculated distances.