Abstract:
A circuit includes an oscillator having a driver and a resonator. The driver receives a supply voltage at a supply input and provides a drive output to drive the resonator to generate an oscillator output signal. A power converter receives an input voltage and generates the supply voltage to the supply input of the driver. A temperature tracking device in the power converter controls the voltage level of the supply voltage to the supply input of the driver based on temperature such that the supply voltage varies inversely to the temperature of the circuit.
Abstract:
A reference generator provides a reference output voltage that is continuously available while providing certain efficiencies of a duty-cycled voltage regulator. The reference output voltage is generated by a sample-and-hold circuit that is coupled to a voltage regulator. On command, the sample-and-hold circuit samples a low dropout voltage regulator that may be referenced by a bandgap circuit. During hold periods of the sample-and-hold circuit, the voltage regulator, in particular the bandgap circuit, may be disabled in order to conserve power. A sample cycle by the sample-and-hold circuit may be triggered by a signal received from a configurable finite state machine. The reference generator is effectively duty cycled in a manner that conserves available battery power, while still providing a constant reference output that is always available. The reference generator is especially suited for low-power, battery operated applications.
Abstract:
A reference generator provides a reference output voltage that is continuously available while providing certain efficiencies of a duty-cycled voltage regulator. The reference output voltage is generated by a sample-and-hold circuit that is coupled to a voltage regulator. On command, the sample-and-hold circuit samples a low dropout voltage regulator that may be referenced by a bandgap circuit. During hold periods of the sample-and-hold circuit, the voltage regulator, in particular the bandgap circuit, may be disabled in order to conserve power. A sample cycle by the sample-and-hold circuit may be triggered by a signal received from a configurable finite state machine. The reference generator is effectively duty cycled in a manner that conserves available battery power, while still providing a constant reference output that is always available. The reference generator is especially suited for low-power, battery operated applications.
Abstract:
A circuit includes an oscillator having a driver and a resonator. The driver receives a supply voltage at a supply input and provides a drive output to drive the resonator to generate an oscillator output signal. A power converter receives an input voltage and generates the supply voltage to the supply input of the driver. A temperature tracking device in the power converter controls the voltage level of the supply voltage to the supply input of the driver based on temperature such that the supply voltage varies inversely to the temperature of the circuit.
Abstract:
A reference generator provides a reference output voltage that is continuously available while providing certain efficiencies of a duty-cycled voltage regulator. The reference output voltage is generated by a sample-and-hold circuit that is coupled to a voltage regulator. On command, the sample-and-hold circuit samples a low dropout voltage regulator that may be referenced by a bandgap circuit. During hold periods of the sample-and-hold circuit, the voltage regulator, in particular the bandgap circuit, may be disabled in order to conserve power. A sample cycle by the sample-and-hold circuit may be triggered by a signal received from a configurable finite state machine. The reference generator is effectively duty cycled in a manner that conserves available battery power, while still providing a constant reference output that is always available. The reference generator is especially suited for low-power, battery operated applications.
Abstract:
One example relates to a monitoring circuit that includes a capacitive digital-to-analog converter that receives a binary code, a reference voltage, a monitored voltage, and a ground reference, the capacitive digital-to-analog converter outputting an analog signal based on the binary code, the reference voltage, the monitored voltage, and the ground reference. The monitoring circuit further includes a comparator including a first input coupled to receive the analog signal and a second input coupled to the reference voltage, the comparator comparing the analog signal to the reference voltage and outputting a comparator signal based on the comparison. The monitoring circuit yet further includes a binary code generator that generates the binary code based on the comparator signal, the binary code approximating a magnitude of the monitored voltage.
Abstract:
One example relates to a monitoring circuit that includes a capacitive digital-to-analog converter that receives a binary code, a reference voltage, a monitored voltage, and a ground reference, the capacitive digital-to-analog converter outputting an analog signal based on the binary code, the reference voltage, the monitored voltage, and the ground reference. The monitoring circuit further includes a comparator including a first input coupled to receive the analog signal and a second input coupled to the reference voltage, the comparator comparing the analog signal to the reference voltage and outputting a comparator signal based on the comparison. The monitoring circuit yet further includes a binary code generator that generates the binary code based on the comparator signal, the binary code approximating a magnitude of the monitored voltage.
Abstract:
A circuit includes an oscillator having a driver and a resonator. The driver receives a supply voltage at a supply input and provides a drive output to drive the resonator to generate an oscillator output signal. A power converter receives an input voltage and generates the supply voltage to the supply input of the driver. The power converter varies the supply voltage based on an adjust command supplied to a command input of the power converter. A detector monitors a voltage level of the oscillator output signal. A controller sets the adjust command to the power converter to control the supply voltage to the supply input of the driver such that the voltage level of the oscillator output signal is set at or above a predetermined threshold voltage.
Abstract:
A circuit includes a crystal oscillator to generate an output frequency for a circuit. A driving oscillator generates a startup signal having a driving frequency that is provided to activate the crystal oscillator. The driving frequency of the startup signal is varied over a range of frequencies that encompass the operating frequency of the crystal oscillator to facilitate startup of the crystal oscillator.