Abstract:
Examples of circuits and amplifiers include recirculation circuitry to reduce or cancel error currents produced by target bipolar junction transistors (BJTs). In an example, first recirculation circuitry is coupled to the base of a first signal-conveyance BJT and to one of the collector or the emitter of the first signal-conveyance BJT; second recirculation circuitry is coupled to the base of a second signal-conveyance BJT and to one of the collector or the emitter of the second signal-conveyance BJT; and biasing circuitry is coupled to the first and second recirculation circuitry. The recirculation circuitry may be implemented with BJTs or MOSFETs. Configurations are provided in which error current(s) are recirculated between the base and collector/emitter node of each target BJT.
Abstract:
One example includes a reference voltage generator system. The system includes an amplifier configured to generate a reference voltage based on a respective input voltage provided at each of at least one input of the amplifier. The system also includes at least one input transistor that is coupled to the at least one input of the amplifier and is statically-biased to conduct a current to set an amplitude of the respective input voltage provided at each of the at least one input of the amplifier. Each of the at least one input transistor includes an input terminal that is coupled in series with an input resistor.
Abstract:
One example includes an reference voltage generator system. The system includes an amplifier configured to generate a reference voltage based on a respective input voltage provided at each of at least one input of the amplifier. The system also includes at least one input transistor that is coupled to the at least one input of the amplifier and is statically-biased to conduct a current to set an amplitude of the respective input voltage provided at each of the at least one input of the amplifier. Each of the at least one input transistor includes an input terminal that is coupled in series with an input resistor.
Abstract:
An integrated circuit includes a first transistor array over a semiconductor substrate and is distributed among a first plurality of first transistor banks. A second transistor array in or over the semiconductor substrate is distributed among a second plurality of second transistor banks. A first one of the first transistor banks is located between a first one and a second one of the second transistor banks, and the second one of the second transistor banks is located between the first one of the first transistor banks and a second one of the first transistor banks. The first transistor array and the second transistor array may be alternately operated to implement a voltage-conversion integrated circuit.
Abstract:
An integrated circuit (IC) chip can include an operational amplifier with adjustable operational parameters. The IC chip can also include a trimming module configured to measure an output voltage of the operational amplifier in response to at least one of detecting that the operational amplifier has a positive supply voltage set to a level greater than a predetermined level and detecting a given common mode voltage at inverting and non-inverting inputs of the operational amplifier. The trimming module can also be configured to adjust the operational parameters of the operational amplifier based on the output voltage to trim the operational amplifier.
Abstract:
An apparatus is provided. The apparatus comprises a second layer disposed over a first layer. Each of the first and second layers have a set of detection electrodes that are spaced apart and electrically isolated from one another and an associated set of interleavers. Each interleaver is located between adjacent detection electrodes from its associated the set of detection electrodes, and each set of interleavers also includes a pair of complementary interleaving electrodes coupled to those that are electrically coupled to the adjacent detection electrodes from its associated set of detection electrodes. The detection electrodes and interleaving electrodes are also substantially transparent to visible spectrum light.