Abstract:
A resonant power transfer system includes resonant circuitry (26) including an inductor coil (59) and a resonant capacitor (51) coupled to a first terminal (27) of the inductor coil, wherein the inductor coil and the resonant capacitor resonate to produce an excitation signal (IS) and a state variable signal (VCS1). Sub-sampling circuitry (30) samples first and second points of the state variable signal at a rate which is substantially less than the RF frequency of the state variable signal. Information recovery circuitry (32) produces a state variable parameter signal representing a parameter (A) of the state variable signal from information in the first and second sampled points. Control circuitry (38) produces a first control signal in response to the state variable parameter signal. Detection and optimization circuitry (41) produces a second control signal in response to the state variable parameter signal. Voltage regulation circuitry (45) produces a regulated supply voltage in response to the first control signal. Switching inverter circuitry produces the excitation signal in response to the regulated supply voltage and the second control signal.
Abstract:
Methods, apparatus, systems and articles of manufacture to efficiently transfer power wirelessly are disclosed. An example apparatus includes a feedback loop to when a second current value is greater than a first current value, change a direction value, the second current value being obtained after the first current value; when the second current value is less than the first current value, maintain the direction value; and a summer to when the direction value corresponds to a first direction value, increase a reference signal by a step size; and when the direction value corresponds to a second direction value different than the first direction value, decrease the reference signal by the step size.
Abstract:
A resonant power transfer system includes resonant circuitry (26) including an inductor coil (59) and a resonant capacitor (51) coupled to a first terminal (27) of the inductor coil, wherein the inductor coil and the resonant capacitor resonate to produce an excitation signal (IS) and a state variable signal (VCS1). Sub-sampling circuitry (30) samples first and second points of the state variable signal at a rate which is substantially less than the RF frequency of the state variable signal. Information recovery circuitry (32) produces a state variable parameter signal representing a parameter (A) of the state variable signal from information in the first and second sampled points. Control circuitry (38) produces a first control signal in response to the state variable parameter signal. Detection and optimization circuitry (41) produces a second control signal in response to the state variable parameter signal. Voltage regulation circuitry (45) produces a regulated supply voltage in response to the first control signal. Switching inverter circuitry produces the excitation signal in response to the regulated supply voltage and the second control signal.
Abstract:
Methods, apparatus, systems and articles of manufacture to efficiently transfer power wirelessly are disclosed. An example apparatus includes a feedback loop to when a second current value is greater than a first current value, change a direction value, the second current value being obtained after the first current value; when the second current value is less than the first current value, maintain the direction value; and a summer to when the direction value corresponds to a first direction value, increase a reference signal by a step size; and when the direction value corresponds to a second direction value different than the first direction value, decrease the reference signal by the step size.
Abstract:
An example apparatus includes a feedback loop to: change a direction value when a second current value is greater than a first current value, the second current value being obtained after the first current value; and maintain the direction value when the second current value is less than the first current value. When the direction value corresponds to a first direction value, a summer increases a reference signal by a step size. When the direction value corresponds to a second direction value different than the first direction value, the summer decrease the reference signal by the step size.
Abstract:
Circuits for controlling a plurality of LEDs connected in series are disclosed herein. The circuit includes a plurality of switches, wherein each switch is connectable between the anode and cathode of one of the plurality of LEDs. Each of the switches has a first state wherein current does not pass through the switch and a second state wherein current passes through the switch. The circuit also includes an input for receiving data to program the switches and a data line for transferring data between a circuit controlling second LEDs that are connected in parallel with the first LEDs and the circuit. In addition, the circuit includes a data output for transferring data to other circuits controlling third LEDs that are connected in series with the first LEDs.
Abstract:
Circuits for controlling a plurality of LEDs connected in series are disclosed herein. The circuit includes a plurality of switches, wherein each switch is connectable between the anode and cathode of one of the plurality of LEDs. Each of the switches has a first state wherein current does not pass through the switch and a second state wherein current passes through the switch. The circuit also includes an input for receiving data to program the switches and a data line for transferring data between a circuit controlling second LEDs that are connected in parallel with the first LEDs and the circuit. In addition, the circuit includes a data output for transferring data to other circuits controlling third LEDs that are connected in series with the first LEDs.