Abstract:
A position estimation method for indoor positioning includes filtering an initial position estimate that includes a corresponding covariance that reflects the quality of the geometry of the reference points and a previous initial position estimate that includes a corresponding covariance that reflects the quality of the geometry of the reference points by a Kalman filter to generate an updated previous position estimate, analyzing the updated previous position estimate to determine if the value is outside of a range, and constraining the updated previous position estimate based on the value being outside of the range.
Abstract:
A method for uplink (UL) wireless backhaul communication at a wireless backhaul remote unit in a radio access network comprising receiving a configuration for radio frames and a transmission schedule through a downlink (DL) physical layer broadcast channel, wherein the transmission schedule comprises a transmission allocation for the remote unit, generating a UL data frame, wherein generating the UL data frame comprises performing forward error correction (FEC) encoding on a data bit stream to generate a plurality of FEC codewords, wherein performing the FEC encoding comprises performing Reed Solomon (RS) encoding on the data bit stream to generate a plurality of RS codewords, performing byte interleaving on the RS codewords, and performing Turbo encoding on the byte interleaved RS codewords to generate one or more Turbo codewords, wherein each Turbo codeword is encoded from more than one RS codeword, and transmitting the UL data frame according to the transmission allocation.
Abstract:
A method to improve position estimates including computing, by a wireless device, a predicted future position of the wireless device from a current location estimate, computing, by the wireless device, a priori probability associated with future position candidates based on the predicted future position, and updating, by the wireless device, the future position candidates with the associated a priori probability.
Abstract:
A mobile wireless device that includes a positioning system to determine a position of the mobile wireless device and to compensate a received signal strength indicator (RSSI) signal received from an access point (AP) when there is a line-of-sight (LOS) channel and the positioning system determines the body of the user of the mobile wireless device is attenuating the received RSSI signal due to the user's body being between the mobile wireless device and the AP.
Abstract:
A method for communicating over a wireless backhaul channel comprising generating a radio frame comprising a plurality of time slots, wherein each time slot comprises a plurality of symbols in time and a plurality of sub-carriers in a system bandwidth, broadcasting a broadcast channel signal comprising a transmission schedule to a plurality of remote units in a number of consecutive sub-carriers centered about a direct current (DC) sub-carrier in at least one of the time slots in the radio frame regardless of the system bandwidth, and transmitting a downlink (DL) control channel signal and a DL data channel signal to a first of the remote units, wherein the DL data channel signal is transmitted by employing a single carrier block transmission scheme comprising a Discrete Fourier Transform (DFT) spreading for frequency diversity.