Abstract:
A system includes an inductor and a first switch coupled between a first end of the inductor and a voltage supply node. The system also includes a second switch coupled between the first end of the inductor and a negative output supply node. The system also includes a third switch coupled between a second end of the inductor and a positive output supply node. The system also includes a fourth switch coupled between the second end of the inductor and a ground node. The system also includes a controller coupled to the first, second, third, and fourth switches. The controller is configured to provide an inductor charge mode, a positive boost mode, a negative boost mode, a first rest state involving the first switch, and a second rest state involving the fourth switch.
Abstract:
A system includes a switching converter circuit and a monitoring circuit coupled to the switching converter circuit. The monitoring circuit includes a current estimation circuit configured to estimate an output current of the switching converter circuit. The monitoring circuit also includes a compare circuit configured to compare the estimated average output current with a threshold, wherein the compare circuit is configured to output an alert signal in response to the estimated output current being greater than the threshold.
Abstract:
A method for uplink (UL) wireless backhaul communication at a wireless backhaul remote unit in a radio access network comprising receiving a configuration for radio frames and a transmission schedule through a downlink (DL) physical layer broadcast channel, wherein the transmission schedule comprises a transmission allocation for the remote unit, generating a UL data frame, wherein generating the UL data frame comprises performing forward error correction (FEC) encoding on a data bit stream to generate a plurality of FEC codewords, wherein performing the FEC encoding comprises performing Reed Solomon (RS) encoding on the data bit stream to generate a plurality of RS codewords, performing byte interleaving on the RS codewords, and performing Turbo encoding on the byte interleaved RS codewords to generate one or more Turbo codewords, wherein each Turbo codeword is encoded from more than one RS codeword, and transmitting the UL data frame according to the transmission allocation.
Abstract:
A method for wireless backhaul communication comprising receiving, by a wireless backhaul transmitter, a data stream in a bit format and generating, by the wireless backhaul transmitter using a single-carrier block transmission scheme, a radio frame to include a plurality of physical data channel (PDCH) blocks, a pilot signal (PS) block and a physical control channel (PCCH) block with each block type pre-appended with a cyclic prefix (CP). A length of the PS block in symbols, a length of the PCCH block in symbols and a length of the PDCH block in symbols is determined by a frequency band, a bandwidth, and a channel condition. The wireless backhaul transmitter then transmits the radio frame.
Abstract:
Embodiments of the invention provide a system and method for chip to chip communications in electronic circuits. In one embodiment, a networking device includes an input port circuit having a transmitter circuit coupled one or more transmitter antennas, wherein the input port circuit transmits a data packet to a first output port circuit using millimeter wave signals. The networking device includes output port circuits including at least the first output port circuit, each of the output port circuits having a receiver circuit coupled to one or more receiver antennas. The networking device includes a beamforming circuit coupled to the one or more transmitter antennas of the input port circuit, wherein the beamforming circuit causes the one or more transmitter antennas to transmit an antenna beam directed at the one or more receiver antennas of the first output port circuit.
Abstract:
A system comprising a controller, a scanner, and a transceiver. The controller is configured to identify a number of channels in which a beacon signal may be wirelessly transmitted. The number of channels is less than a total number of channels available for receiving transmissions. The scanner is configured to scan each of the number of channels for a first beacon signal. The transceiver is configured to receive the first beacon signal from one of the number of channels.
Abstract:
A method for communicating over a wireless backhaul channel comprising generating a radio frame comprising a plurality of time slots, wherein each time slot comprises a plurality of symbols in time and a plurality of sub-carriers in a system bandwidth, broadcasting a broadcast channel signal comprising a transmission schedule to a plurality of remote units in a number of consecutive sub-carriers centered about a direct current (DC) sub-carrier in at least one of the time slots in the radio frame regardless of the system bandwidth, and transmitting a downlink (DL) control channel signal and a DL data channel signal to a first of the remote units, wherein the DL data channel signal is transmitted by employing a single carrier block transmission scheme comprising a Discrete Fourier Transform (DFT) spreading for frequency diversity.