Abstract:
In examples, a semiconductor package comprises a first conductive terminal; a second conductive terminal; a conductive pathway coupling the first and second conductive terminals, the conductive pathway configured to generate a magnetic field; a semiconductor die including a circuit configured to detect the magnetic field; and first and second polyimide layers positioned between the conductive pathway and the semiconductor die.
Abstract:
In one example, a method comprises etching a vertical spring in a substrate, the vertical spring encompassing a device formed on a front side of the substrate. The method further comprises bonding a cap to the front side of the substrate, the cap disposed over the device and the vertical spring.
Abstract:
Disclosed embodiments include an integrated circuit having a semiconductor substrate with insulator layers and conductor layers overlying the semiconductor substrate. A scribe region overlying the semiconductor substrate and a periphery of the integrated circuit includes a crack arrest structure and a scribe seal. The crack arrest structure provides first vertical conductor structure that surrounds the periphery of the integrated circuit. The scribe seal is spaced from and surrounded by the crack arrest structure and provides a second vertical conductor structure. The scribe seal includes first and second vias spaced from each other and connected to one of the conductor layers. The first via is a trench via and the second via is a stitch via, with the second via being located closer to the crack arrest structure than the first via.
Abstract:
A MEMS IR sensor, with a cavity in a substrate underlapping an overlying layer and a temperature sensing component disposed in the overlying layer over the cavity, may be formed by forming an IR-absorbing sealing layer on the overlying layer so as to cover access holes to the cavity. The sealing layer is may include a photosensitive material, and the sealing layer may be patterned using a photolithographic process to form an IR-absorbing seal. Alternately, the sealing layer may be patterned using a mask and etch process to form the IR-absorbing seal.
Abstract:
A MEMS IR sensor, with a cavity in a substrate underlapping an overlying layer and a temperature sensing component disposed in the overlying layer over the cavity, may be formed by forming an IR-absorbing sealing layer on the overlying layer so as to cover access holes to the cavity. The sealing layer is may include a photosensitive material, and the sealing layer may be patterned using a photolithographic process to form an IR-absorbing seal. Alternately, the sealing layer may be patterned using a mask and etch process to form the IR-absorbing seal.
Abstract:
A semiconductor system includes a substrate. The substrate has a front side and a back side. A device is formed on the front side of the substrate. A vertical spring is etched in the substrate about the device. A trench is etched in the front side of the substrate about the device. A wall of the trench forms a side of the vertical spring.
Abstract:
A structure includes a substrate which includes a surface. The structure also includes a horizontal-type Hall sensor positioned within the substrate and below the surface of the substrate. The structure further includes a patterned magnetic concentrator positioned above the surface of the substrate, and a protective overcoat layer positioned above the magnetic concentrator.
Abstract:
An electronic device comprises: a molybdenum layer; a bond pad formed on the molybdenum layer, the bond pad comprising aluminum; and a wire bonded to the bond pad, the wire comprising gold.