Abstract:
A motor control circuit includes a processor configured to calculate a plurality of motor impedances from measurements of an excitation voltage on a power bus to a motor and measurements of a plurality of currents through the motor resulting from the excitation voltage, and the processor configured to calculate individual winding inductances in the motor, based on the measured motor impedances, and configured to determine whether there is an inter-turn winding fault based on the calculated individual winding inductances.
Abstract:
A motor control circuit includes a processor configured to calculate a plurality of motor impedances from measurements of an excitation voltage on a power bus to a motor and measurements of a plurality of currents through the motor resulting from the excitation voltage, and the processor configured to calculate individual winding inductances in the motor, based on the measured motor impedances, and configured to determine whether there is an inter-turn winding fault based on the calculated individual winding inductances.
Abstract:
A motor control circuit includes a processor configured to calculate a plurality of motor impedances from measurements of an excitation voltage on a power bus to a motor and measurements of a plurality of currents through the motor resulting from the excitation voltage, and the processor configured to calculate individual winding inductances in the motor, based on the measured motor impedances, and configured to determine whether there is an inter-turn winding fault based on the calculated individual winding inductances.
Abstract:
A system includes a proportional-integrated-derivative (PID) regulator. The system also includes a fault detection unit. The fault detection unit is for receiving at least two outputs from the PID regulator. The at least two outputs include at least two rotor reference frame (D-Q) currents. The fault detection unit is further for generating a detection signal based on the at least two rotor reference frame currents. The detection signal identifies a fault based on the fault detection signal amplitude value based on the magnitudes of the amplitudes for each of the at least two rotor reference frame D-Q currents. The fault detection unit is for identifying an existence of a permanent magnet motor fault based on a comparison between the fault detection signal amplitude value and an amplitude threshold value. Further the fault localization signature is utilized to locate the location of the fault.
Abstract:
A system includes a proportional-integrated-derivative (PID) regulator. The system also includes a fault detection unit. The fault detection unit is for receiving at least two outputs from the PID regulator. The at least two outputs include at least two rotor reference frame (D-Q) currents. The fault detection unit is further for generating a detection signal based on the at least two rotor reference frame currents. The detection signal identifies a fault based on the fault detection signal amplitude value based on the magnitudes of the amplitudes for each of the at least two rotor reference frame D-Q currents. The fault detection unit is for identifying an existence of a permanent magnet motor fault based on a comparison between the fault detection signal amplitude value and an amplitude threshold value. Further the fault localization signature is utilized to locate the location of the fault.
Abstract:
A system includes a proportional-integrated-derivative (PID) regulator. The system also includes a fault detection unit. The fault detection unit is for receiving at least two outputs from the PID regulator. The at least two outputs include at least two rotor reference frame (D-Q) currents. The fault detection unit is further for generating a detection signal based on the at least two rotor reference frame currents. The detection signal identifies a fault based on the fault detection signal amplitude value based on the magnitudes of the amplitudes for each of the at least two rotor reference frame D-Q currents. The fault detection unit is for identifying an existence of a permanent magnet motor fault based on a comparison between the fault detection signal amplitude value and an amplitude threshold value. Further the fault localization signature is utilized to locate the location of the fault.
Abstract:
A method includes receiving first and second output signals from a proportional-integral-derivative (PID) regulator circuit, wherein the first and second output signals represent three-phase currents provided into a machine. The method further includes determining a fault detection signal based on the first and second output signals. The method also includes comparing the fault detection signal to a threshold; and detecting a fault in the machine based on the fault detection signal exceeding the threshold.
Abstract:
A system includes a proportional-integrated-derivative (PID) regulator. The system also includes a fault detection unit. The fault detection unit is for receiving at least two outputs from the PID regulator. The at least two outputs include at least two rotor reference frame (D-Q) currents. The fault detection unit is further for generating a detection signal based on the at least two rotor reference frame currents. The detection signal identifies a fault based on the fault detection signal amplitude value based on the magnitudes of the amplitudes for each of the at least two rotor reference frame D-Q currents. The fault detection unit is for identifying an existence of a permanent magnet motor fault based on a comparison between the fault detection signal amplitude value and an amplitude threshold value. Further the fault localization signature is utilized to locate the location of the fault.
Abstract:
A motor control circuit includes a processor configured to calculate a plurality of motor impedances from measurements of an excitation voltage on a power bus to a motor and measurements of a plurality of currents through the motor resulting from the excitation voltage, and the processor configured to calculate individual winding inductances in the motor, based on the measured motor impedances, and configured to determine whether there is an inter-turn winding fault based on the calculated individual winding inductances.