Abstract:
Methods, apparatus, systems, and articles of manufacture are disclosed to generate a modulation protocol to output audio. An example apparatus includes a modulation circuit including a first input, a second input, a first output, and a second output; a first gate coupled to the first output of the modulation circuit; a second gate coupled to the second output of the modulation circuit; a first multiplexer including a first input coupled to the first output of the modulation circuit, a second input coupled to the output of the second gate, and an output coupled to a first switch; and a second multiplexer including a first input coupled to the second output of the modulation circuit, a second input coupled to the output of the first gate, and an output coupled to a second switch.
Abstract:
Described embodiments include a circuit for filtering electromagnetic interference (EMI) that includes an electrically conductive housing enclosing the circuit, a first power terminal providing a first signal, and a second power terminal providing a second signal, the first and second signals forming a differential power input. A filter circuit provides a common mode noise cancelling signal at an output responsive to first and second inputs. An inductive choke has first and second coils that are magnetically coupled. The first coil is coupled between the first power terminal and a first converter input. The second coil is coupled between the second power terminal and a second converter input. A third capacitor is coupled between the filter output and the second power terminal. A fourth capacitor is coupled between the first power terminal and the second power terminal, and an inductor is coupled between the housing and a ground terminal.
Abstract:
A circuit includes a capacitor-drop power supply including a series combination of a resistor and a first capacitor. The capacitor-drop power supply includes an output and is adapted to be coupled to a light source. The circuit also includes a second capacitor, a switch, and an active clamp circuit. The second capacitor couples to the output of the capacitor-drop power supply. The switch couples in parallel with the series combination of the resistor and the first capacitor. The switch is configured to cause the light source to illuminate. The active clamp circuit couples to the capacitor-drop power supply. The active clamp circuit has an output coupled to the capacitor-drop power supply. The active clamp circuit is configured to cause current to continuously flow through at least one of the switch or the series combination of resistor and first capacitor regardless of a magnitude of the voltage across the second capacitor.
Abstract:
Apparatus and method for controlling inductor current in a switch mode power supply. In one embodiment, a switch mode power supply includes an inductor, a high-side switch coupled to the inductor, a low-side switch coupled to the inductor, and a controller. The controller is coupled to at least one of the high-side switch and the low-side switch. The controller includes a first capacitor and a current source. The controller is configured to control timing of current switching to the inductor by enabling current flow through the at least one of the high-side switch and the low-side switch based on time to charge the first capacitor via the current source. The time is a function of voltage across the inductor.
Abstract:
A device includes first and second device terminals, a fuse, a first circuit, a first transistor, and a control circuit. The fuse terminal couples to the first device terminal. The first circuit couples to the second fuse terminal. The second fuse terminal has a first voltage. The first transistor has a first control input and first and second current terminals. The first current terminal couples to the second fuse terminal, and the second current terminal couples to the second device terminal. The control circuit: turns “on” the first transistor into a saturation region if the first voltage exceeds a threshold and a current through the fuse exceeds a trip threshold current of the fuse; and turns “on” the first transistor into a linear region if the first voltage exceeds a threshold and a current through the fuse is below the trip threshold current of the fuse.
Abstract:
In one example, an apparatus comprises a control circuit, a first power stage, and a second power stage. The control circuit has an input, first control outputs, and second control outputs, the control circuit including a modulated signal generator coupled between the input and the first control outputs and an amplifier coupled between the input and the second control outputs. The first power stage has first control inputs and a first power stage output, the first control inputs coupled to the first control outputs. And the second power stage has second control inputs and a second power stage output, the second control inputs coupled to the second control outputs.
Abstract:
An active electromagnetic interference (EMI) filter includes a first amplifier and a second amplifier. The first amplifier is configured to sense noise signals on a power conductor. The second amplifier is coupled to the first amplifier and is configured to drive a cancellation signal onto the power conductor. The cancellation signal is to reduce the amplitude of the noise signals sensed by the first amplifier. An output impedance of the second amplifier is lower than an output impedance of the first amplifier.
Abstract:
A power converter including a piezoelectric resonator. The power converter includes a first transistor coupled between an input terminal and a first plate of the piezoelectric resonator, and a second transistor coupled between the first plate of the piezoelectric resonator and an output terminal. A load may be coupled at the output terminal. Controller circuitry has inputs coupled to the input node, the output node, and to the first plate of the piezoelectric resonator, and outputs coupled to control terminals of the first and second transistors. The controller circuitry operates to turn on the first transistor responsive to a comparison of voltages at the first plate and the input terminal, turn on the second transistor responsive to a comparison of voltages at the first plate and the output terminal, and turn off one of the first and second transistors responsive to an output level at the output terminal.
Abstract:
An active electromagnetic interference (EMI) filter includes a first amplifier and a second amplifier. The first amplifier is configured to sense noise signals on a power conductor. The second amplifier is coupled to the first amplifier and is configured to drive a cancellation signal onto the power conductor. The cancellation signal is to reduce the amplitude of the noise signals sensed by the first amplifier. An output impedance of the second amplifier is lower than an output impedance of the first amplifier.
Abstract:
Methods, apparatus, systems, and articles of manufacture are disclosed to generate a modulation protocol to output audio. An example apparatus includes a modulation circuit including a first input, a second input, a first output, and a second output; a first gate coupled to the first output of the modulation circuit; a second gate coupled to the second output of the modulation circuit; a first multiplexer including a first input coupled to the first output of the modulation circuit, a second input coupled to the output of the second gate, and an output coupled to a first switch; and a second multiplexer including a first input coupled to the second output of the modulation circuit, a second input coupled to the output of the first gate, and an output coupled to a second switch.