摘要:
The invention provides combination semiconductor and plasma devices, including transistors and phototransistors. A preferred embodiment hybrid plasma semiconductor device has active solid state semiconductor regions; and a plasma generated in proximity to the active solid state semiconductor regions. Devices of the invention are referred to as hybrid plasma-semiconductor devices, in which a plasma, preferably a microplasma, cooperates with conventional solid state semiconductor device regions to influence or perform a semiconducting function, such as that provided by a transistor. The invention provides a family of hybrid plasma electronic/photonic devices having properties previously unavailable. In transistor devices of the invention, a low temperature, glow discharge is integral to the hybrid transistor. Example preferred devices include hybrid BJT and MOSFET devices.
摘要:
Logic devices are provided in multiple sub-collector and sub-emitter microplasma devices formed in thin and flexible, or inflexible, semiconductor materials. Logic operations are provided with one of a plurality of microplasmas forming sub-collectors with a common emitter, or a common collector plasma with a plurality of sub-emitter regions in a solid state semi-conductor pn-junction, and generating a logic output from an electrode, based upon electrode inputs to two other electrodes.
摘要:
Logic devices are provided in multiple sub-collector and sub-emitter microplasma devices formed in thin and flexible, or inflexible, semiconductor materials. Logic operations are provided with one of a plurality of microplasmas forming sub-collectors with a common emitter, or a common collector plasma with a plurality of sub-emitter regions in a solid state semi-conductor pn-junction, and generating a logic output from an electrode, based upon electrode inputs to two other electrodes.
摘要:
A hybrid plasma semiconductor device has a thin and flexible semiconductor base layer. An emitter region is diffused into the base layer forming a pn-junction. An insulator layer is upon one side the base layer and emitter region. Base and emitter electrodes are isolated from each other by the insulator layer and electrically contact the base layer and emitter region through the insulator layer. A thin and flexible collector layer is upon an opposite side of the base layer. A microcavity is formed in the collector layer and is aligned with the emitter region. Collector electrodes are arranged to sustain a microplasma within the microcavity with application of voltage to the collector electrodes. A depth of the emitter region and a thickness of the base layer are set to define a predetermined thin portion of the base layer as a base region between the emitter region and the microcavity. Microplasma generated in the microcavity serves as a collector. Logic devices are provided in multiple sub collector and sub emitter microplasma devices formed in thin and flexible or not flexible semiconductor materials.
摘要:
The invention provides combination semiconductor and plasma devices, including transistors and phototransistors. A preferred embodiment hybrid plasma semiconductor device has active solid state semiconductor regions; and a plasma generated in proximity to the active solid state semiconductor regions. Devices of the invention are referred to as hybrid plasma-semiconductor devices, in which a plasma, preferably a microplasma, cooperates with conventional solid state semiconductor device regions to influence or perform a semiconducting function, such as that provided by a transistor. The invention provides a family of hybrid plasma electronic/photonic devices having properties previously unavailable. In transistor devices of the invention, a low temperature, glow discharge is integral to the hybrid transistor. Example preferred devices include hybrid BJT and MOSFET devices.
摘要:
A hybrid plasma semiconductor device has a thin and flexible semiconductor base layer. An emitter region is diffused into the base layer forming a pn-junction. An insulator layer is upon one side the base layer and emitter region. Base and emitter electrodes are isolated from each other by the insulator layer and electrically contact the base layer and emitter region through the insulator layer. A thin and flexible collector layer is upon an opposite side of the base layer. A microcavity is formed in the collector layer and is aligned with the emitter region. Collector electrodes are arranged to sustain a microplasma within the microcavity with application of voltage to the collector electrodes. A depth of the emitter region and a thickness of the base layer are set to define a predetermined thin portion of the base layer as a base region between the emitter region and the microcavity. Microplasma generated in the microcavity serves as a collector. Logic devices are provided in multiple sub collector and sub emitter microplasma devices formed in thin and flexible or not flexible semiconductor materials.
摘要:
Preferred embodiment flexible and on wafer hybrid plasma semiconductor devices have at least one active solid state semiconductor region; and a plasma generated in proximity to the active solid state semiconductor region(s). A preferred device is a hybrid plasma semiconductor device having base, emitting and microcavity collector regions formed on a single side of a device layer. Visible or ultraviolet light is emitted during operation by plasma collectors in the array. In preferred embodiments, individual PBJTs in the array serve as sub-pixels of a full-color display.
摘要:
Preferred embodiment flexible and on wafer hybrid plasma semiconductor devices have at least one active solid state semiconductor region; and a plasma generated in proximity to the active solid state semiconductor region(s). A preferred device is a hybrid plasma semiconductor device having base, emitting and microcavity collector regions formed on a single side of a device layer. Visible or ultraviolet light is emitted during operation by plasma collectors in the array. In preferred embodiments, individual PBJTs in the array serve as sub-pixels of a full-color display.