Abstract:
Stiffened skin panels comprise alternating truss core portions and solid laminate portions sandwiched between inner and outer facesheets, all formed from a fiber reinforced thermoplastic. The components of the panels are co-consolidated using induction heating. The panels are stiffened with spars fastened to the solid laminate portions.
Abstract:
A computer-implemented method of determining moisture content of a composite structure is provided. The method includes performing a thermal analysis calculation on the composite structure to determine a temporal surface temperature profile of the composite structure based on temporal environmental parameter profiles, wherein the surface temperature profile is determined independently of a moisture content of the composite structure. The method also includes performing a moisture content analysis calculation on the composite structure to determine a moisture content of the composite structure, wherein the moisture content analysis calculation is based on the determined temporal surface temperature profile and a thickness of the composite structure. The thermal analysis calculation is performed iteratively with a first time period and the moisture content analysis calculation is performed iteratively with a second time period that is longer than the first time period.
Abstract:
Methods and apparatuses are disclosed relating to multilayer 3D textile composite materials containing self-healing resins for use as protective structures on stationary objects, and moving objects including, without limitation, vehicles including spacecraft and aircraft.
Abstract:
In one or more aspects of the present disclosure, a mandrel is disclosed. The mandrel having a shape memory alloy (SMA) shell having a longitudinal axis, an interior extending along the longitudinal axis and an exterior contour, the SMA shell being configured to interface with a structure to be cured, and at least one SMA actuation member disposed within the interior and connected to the SMA shell, where the at least one SMA actuation member is configured to exert pressure against the SMA shell effecting an interface pressure between the exterior contour of the SMA shell and the structure to be cured where the exterior contour has a predetermined actuated shape that corresponds to a predetermined cured shape of the structure to be cured.
Abstract:
Manufacturing a thermoplastic composite tubular structure embedded with a first load fitting comprising the steps of braiding a first plurality of inner layers of thermoplastic composite material around a soluble, expandable mandrel. A first load fitting is positioned on the first plurality of inner layers of thermoplastic composite material. A second plurality of outer layers of thermoplastic composite material is braided around the first load fitting and the mandrel so as to form an overbraided mandrel embedded with the first load fitting. The overbraided mandrel is installed into a matched tooling assembly and heated at a specified heating profile in order to consolidate the first plurality of inner layers of thermoplastic composite material and the second plurality of outer layers of thermoplastic composite material with the first load fitting so as to form a thermoplastic composite tubular structure embedded with the first load fitting. A second load fitting may be positioned on the first plurality of inner layers of thermoplastic composite material.
Abstract:
A method of determining an allowable moisture content of a composite structure includes performing a thermal analysis on the composite structure to determine a surface temperature profile of the composite structure. The surface temperature profile is determined independently of a moisture content of the composite structure. The method also includes performing a moisture analysis on the composite structure to determine an allowable moisture content of the composite structure such that the moisture analysis is based on the determined surface temperature profile.
Abstract:
Provided are assemblies having composite structures interlocked with shape memory alloy structures and methods of fabricating such assemblies. Interlocking may involve inserting an interlocking protrusion of a shape memory alloy structure into an interlocking opening of a composite structure and heating at least this protrusion of the shape memory alloy structure to activate the alloy and change the shape of the protrusion. This shape change engages the protrusion in the opening such that the protrusion cannot be removed from the opening. The shape memory alloy structure may be specifically trained prior to forming an assembly using a combination of thermal cycling and deformation to achieve specific pre-activation and post-activation shapes. The pre-activation shape allows inserting the interlocking protrusion into the opening, while the post-activation shape engages the interlocking protrusion within the opening. As such, activation of the shape memory alloy interlocks the two structures.
Abstract:
A support structure to mount landing gear to a wing spar of an aircraft. The support structure includes a trunnion assembly having a first trunnion and a second trunnion that are connected together with the first trunnion positioned on a first side of the wing spar and a second trunnion positioned on an opposing second side of the wing spar. The trunnion assembly is configured to support a first section of the landing gear.
Abstract:
Described herein are stringer assemblies, such as blade stringers, and methods of forming thereof. A stringer assembly comprises a first fabric composite stiffener, a second fabric composite stiffener, and an intermediate tape composite stiffener, disposed between and connected to each of the first and second stiffeners. Using three separate components allows forming sharp bends, eliminating voids and gap fillers, and adding new features, such as edge reinforcements. Each of the first and second fabric composite stiffeners comprises a web portion, a flange portion, and a curved portion, positioned between the web and flange portions. The web portions surround and are attached to the intermediate tape composite stiffener and, in some examples, include tapered-out edges for additional rigidity. The flange portions are attached to the composite base. The curved portions conform to the flared-out edges of the intermediate tape composite stiffener, which extends and connects to the composite base.
Abstract:
A movable surface of an aircraft has a front spar extending along a spanwise direction between opposing movable surface ends. The movable surface also includes a plurality of ribs defining a plurality of bays between adjacent pairs of the ribs. Each rib extends between the front spar and a trailing edge portion of the movable surface. The movable surface further includes an upper and a lower skin panels coupled to the ribs and the front spar. In addition, the bull surface includes a plurality of bead stiffeners coupled to an inner surface of at least one of the upper skin panel and the lower skin panel. The bead stiffeners within the bays are spaced apart from each other and are oriented non-parallel to the front spar and have a bead stiffener cap having opposing cap ends respectively locate proximate the front spar and the trailing edge portion.