摘要:
An inexpensive ion sensor catalyst capable of detecting hydrogen phosphate ions in water and determining hydrogen phosphate ion concentration on the basis of oxidation current density for the ions, along with an ion sensor and a quantification method, the ion sensor catalyst being characterized by providing higher detection sensitivity than conventional ion sensor catalysts, being capable of maintaining high detection sensitivity over a wide range of hydrogen phosphate ion concentration, achieving a proportional relationship between concentration and oxidation current density, so that the concentration can be determined with accuracy regardless of the concentration range, and allowing oxidation current to reach a steady-state value in a short time, so that time to determine current density is short, resulting in shortened time to quantify hydrogen phosphate ions, and stable response to hydrogen phosphate ion oxidation can be made repeatedly.
摘要:
An electrowinning system is provided that is capable of suppressing accumulation of a side reaction product on an anode and a rise of an electrolysis voltage caused thereby, and an electrowinning method is provided using the system. To solve this problem, the electrowinning system of the present invention applies predetermined electrolysis current between an anode and a cathode placed in an electrolyte, thereby depositing a desired metal on the cathode, in which the electrolyte is a sulfuric acid-based or chloride-based solution containing ions of the metal, and the anode has a catalytic layer, containing amorphous iridium oxide or amorphous ruthenium oxide, formed on a conductive substrate.
摘要:
Provided is a chlorine evolution method which includes contacting an anode with chloride based aqueous solution and generating chlorine as a main reaction at the anode, in which a main reaction of the anode is chlorine evolution, and the chlorine evolution anode which is low in potential of the anode for chlorine evolution, thereby being able to decrease an electrolytic voltage and lower an electric energy consumption rate. The chlorine evolution anode of the present invention is a chlorine evolution anode in which chlorine evolution from an aqueous solution is a main reaction of the anode and also in which a catalytic layer containing amorphous ruthenium oxide and amorphous tantalum oxide is formed on a conductive substrate.
摘要:
In a case where an alkali aqueous solution is used as an electrolyte, provided are an oxygen catalyst excellent in catalytic activity and composition stability, an electrode having high activity and stability using this oxygen catalyst, and an electrochemical measurement method that can evaluate the catalytic activity of the oxygen catalyst alone. The oxygen catalyst is an oxide having peaks at positions of 2θ=30.07°±1.00°, 34.88°±1.00°, 50.20°±1.00°, and 59.65°±1.00° in an X-ray diffraction measurement using a CuKα ray, and having constituent elements of bismuth, ruthenium, sodium, and oxygen. An atom ratio O/Bi of oxygen to bismuth and an atom ratio O/Ru of oxygen to ruthenium are both more than 3.5.
摘要:
Provided are: an oxygen catalyst that uses an alkaline aqueous solution as an electrolyte and has high catalytic activity; and an electrode. The oxygen catalyst according to the present invention is an oxygen catalyst in which an alkaline aqueous solution is used as an electrolyte, the oxygen catalyst being characterized by having a pyrochlore oxide structure including bismuth on an A-site and ruthenium on a B-site, and containing manganese as well as bismuth and ruthenium. The electrode according to the present invention is characterized by using the oxygen catalyst according to the present invention.
摘要:
An electrode used for oxygen reactions, the electrode being excellent in catalytic activity and stability, a method of producing the electrode, and an electrochemical device using the electrode are provided. This electrode includes, as an oxygen catalyst, an oxide that has peaks at positions of 2θ=34.88°±1.00°, 50.20°±1.00°, and 59.65°±1.00° in an X-ray diffraction measurement using a CuKα ray and has constituent elements of bismuth, ruthenium, sodium, and oxygen.
摘要:
Provided is a metal negative electrode that has an excellent repeat resistance and is excellent in charge and discharge cycle characteristics even in a high charge and discharge rate, a method for fabricating the same, and a secondary battery using the metal negative electrode. The metal negative electrode is a metal negative electrode used for a secondary battery, which includes an active material portion, a current collector, and a non-electronically conductive reaction space divider. The active material portion forms metal during charging and forms an oxidation product of the metal during discharging. The metal is used as a negative-electrode active material. The current collector is electrically connected to the active material portion. The non-electronically conductive reaction space divider is integrally formed with or connected to the current collector and/or the active material portion. The reaction space divider has a plurality of electrolyte holder portions configured to hold a liquid electrolyte.
摘要:
An electrowinning system is provided that is capable of suppressing accumulation of a side reaction product on an anode and a rise of an electrolysis voltage caused thereby, and an electrowinning method is provided using the system. To solve this problem, the electrowinning system of the present invention applies predetermined electrolysis current between an anode and a cathode placed in an electrolyte, thereby depositing a desired metal on the cathode, in which the electrolyte is a sulfuric acid-based or chloride-based solution containing ions of the metal, and the anode has a Catalytic layer, containing amorphous iridium oxide or amorphous ruthenium oxide, formed on a conductive substrate.