Abstract:
The present subject matter is directed to water disinfection by pulsed electric field (PEF) systems. The present subject matter relates to a pulsed electric field assembly with a separator that separates and disinfects the microorganisms in drinking water. The present subject matter relates to an anti-corrosion electrode, particularly an electrode having a zeolite coating layer serving as a protector, a process for the preparation a zeolite coating on a conducting electrode substrate, and application of the zeolite coated electrode on water electrolysis and PEF systems.
Abstract:
A gel composition for air freshening or disinfecting, comprising a silicon alkoxide or colloidal silica, a volatile or gaseous fragrance and/or disinfectant, water, an acid or base catalyst, a water-soluble solvent, and optionally other volatile components and additives, and a method for preparing the same. The gel can be transparent or colored, has a homogeneous texture and a soft to rigid structure, and contains volatile or gaseous components from 0 vol % to 85 vol % for scented materials (fragrance and oils) and/or 0-8000 ppm of disinfectant, which are released at a steady rate under ambient conditions, controlled by the shape and opening of the gel container. Botanicals or plastic decorations may be added into the gel to improve its aesthetic appeal. The preparation method is easier and requires less energy consumption and the gel is used as an air freshener or disinfectant.
Abstract:
Microbial disinfection is performed using continuous or intermittent lighting using one or more narrow wavelength light sources. The light sources illuminate with narrow wavelength characteristics. The lighting provides a sufficiently high intensity for rapid microbial disinfection process, while reducing the average energy consumption for microbial disinfection during the microbial disinfection process by targeting multiple cellular sites along different inactivation pathways.
Abstract:
The present disclosure relates to a micro-mini pulsed electric field (PEF) device for point-of-use disinfection of drinking water. The pulsed electric field device comprises micro-engineered electrodes and a low-voltage pulsed electric field generator circuit. A pulsed electric field is generated across a micro-gap between the electrodes to achieve disinfection of drinking water.
Abstract:
A gel composition for air freshening or disinfecting, comprising a silicon alkoxide or colloidal silica, a volatile or gaseous fragrance and/or disinfectant, water, an acid or base catalyst, a water-soluble solvent, and optionally other volatile components and additives, and a method for preparing the same. The gel can be transparent or colored, has a homogeneous texture and a soft to rigid structure, and contains volatile or gaseous components from 0 vol % to 85 vol % for scented materials (fragrance and oils) and/or 0-8000 ppm of disinfectant, which are released at a steady rate under ambient conditions, controlled by the shape and opening of the gel container. Botanicals or plastic decorations may be added into the gel to improve its aesthetic appeal. The preparation method is easier and requires less energy consumption and the gel is used as an air freshener or disinfectant.
Abstract:
The moisture-resistant catalyst for air pollution remediation is a catalyst with moisture-resistant properties, and which is used for removing nitrogen compound pollutants, such as ammonia (NH3), from air. The moisture-resistant catalyst for air pollution remediation includes at least one metal oxide catalyst, at least one inorganic oxide support for supporting the at least one metal oxide catalyst, and a porous framework for immobilizing the at least one metal oxide catalyst and the at least one inorganic oxide support, where the porous framework is moisture-resistant. As non-limiting examples, the at least one metal oxide catalyst may be supported on the at least one inorganic oxide support by precipitation, impregnation, dry milling, ion-exchange or combinations thereof. The at least one metal oxide catalyst supported on the at least one inorganic oxide support may be physically embedded in the porous framework.
Abstract:
A material for moisture removal and/or water harvesting from air may include a hydrophilic material containing micropores and a low water activity material confined within the micropores of the hydrophilic material. Apparatuses containing such materials and methods for moisture removal and/or water harvesting from air by using such materials are also described.
Abstract:
The present invention provides a method for preparing a material in the form of liquid for forming an antimicrobial surface coating with multi-level antimicrobial properties, comprising: encapsulating one or more volatile or gaseous biocides in two or more amphiphilic block copolymers to obtain a w/o/w double emulsion, and mixing the w/o/w double emulsion with one or more nonvolatile biocides, each of which is selected from the group consisting of a metal containing biocide, triclosan, a carboxylic acid, a sugar acid and a combination thereof.
Abstract translation:本发明提供了一种制备液体形式的材料的方法,用于形成具有多级抗微生物性质的抗微生物表面涂层,其包括:将一种或多种挥发性或气态杀生物剂包封在两种或更多种两亲性嵌段共聚物中以获得aw / o / w双重乳液,并将w / o / w双重乳液与一种或多种非挥发性杀生物剂混合,每种非杀菌剂选自含有杀生物剂的金属,三氯生,羧酸,糖酸及其组合 。
Abstract:
An aerogel is formed by preparing metal-organic framework (MOF) aerogels by preparing a porous solid comprising a metal precursor for the metal-organic framework (MOF) aerogels, and transforming the metal precursor into the MOF by reacting the porous solid with organic ligands mixed with a solvent. The solvent is then removed by supercritical extraction and drying.
Abstract:
A self-humidifying fuel cell is made by preparing a porous substrate, coating the substrate with a zeolitic material (or a graphene derivative) and filling the pores with a mixture of graphene derivative and proton-conducting material (or a proton-conducting material). The coating of the substrate includes selecting a zeolitic material, and applying coating on the pore walls and surface of the porous substrate, to form zeolitic material-coated pores. The resulting composite material is used as a self-humidifying proton-conducting membrane in a fuel cell.