Abstract:
A self-humidifying fuel cell is made by preparing a porous substrate, coating the substrate with a zeolitic material (or a graphene derivative) and filling the pores with a mixture of graphene derivative and proton-conducting material (or a proton-conducting material). The coating of the substrate includes selecting a zeolitic material, and applying coating on the pore walls and surface of the porous substrate, to form zeolitic material-coated pores. The resulting composite material is used as a self-humidifying proton-conducting membrane in a fuel cell.
Abstract:
Provided is an antimicrobial coating material comprising one or more biocides encapsulated in inorganic-organic shells. The antimicrobial coating material can be applied on porous materials or porous media to form and antimicrobial coating without changing the physical properties and the functions of porous materials or porous media. The coating provides a durable, multi-level antimicrobial performance at high temperature through contact-killing, release-killing, anti-adhesion and self-cleaning. Also provided is a method of producing the antimicrobial coating material.
Abstract:
The antimicrobial coating material for surface coating is formed from encapsulated biocides. The biocides include at least one antimicrobial component. The biocides are encapsulated in inorganic-organic shells which are permeable to the biocides. The organic materials may include at least one nonionic polymer. The inorganic-organic shells encapsulate and contain the biocides to form capsule structures for storage and release of the biocides. The capsule structures may be single capsules or capsule-in-capsule structures. The inorganic materials may be present in a concentration of 0.5-95 wt % of the inorganic-organic shells. Alternatively, the inorganic materials may be present in a concentration of 5-60 wt %. The inorganic materials and the organic materials are each intermixed, with respect to one another, in structures of the inorganic-organic shells. These structures may be an attachment structure, a hybrid structure or a multi-layered structure.
Abstract:
Porous metal oxide catalytic materials with planar morphologies which are derived from metal-organic framework (MOF) materials via thermal decomposition, oxidation pretreatment and pyrolysis processes. The porous metal oxides are mainly transition metal oxides, derived from MOFs containing the corresponding transition metal ions, such as Cu, Zn, Y, La, Ce, Ti, Zr, V, Cr, Mn, Fe, Co, and Ni ions. The transformation conditions from MOF materials to metal oxides, such as temperature, atmosphere and duration, are well defined to obtain metal oxides with controlled morphologies. Furthermore, the present subject matter relates to a low-temperature catalytic decomposition of volatile organic compounds (VOCs) with a wide concentration range on two-dimensional metal oxides.
Abstract:
Microbial disinfection is performed using continuous or intermittent lighting using one or more narrow wavelength light sources. The light sources illuminate with narrow wavelength characteristics. The lighting provides a sufficiently high intensity for rapid microbial disinfection process, while reducing the average energy consumption for microbial disinfection during the microbial disinfection process by targeting multiple cellular sites along different inactivation pathways.