Abstract:
The present disclosure provides substituted 9H-pyrimido[4,5-b]indoles and 5H-pyrido[4,3-b]indoles and related analogs represented by Formula I: and the pharmaceutically acceptable salts, hydrates, and solvates thereof, wherein R1a, A, B1, B2, G, X1, Y1, Y2, and Y3 are as defined as set forth in the specification. The present disclosure is also directed to the use of compounds of Formula I to treat a condition or disorder responsive to inhibition of BET bromodomains. Compounds of the present disclosure are especially useful for treating cancer.
Abstract:
The present disclosure relates generally to thienopyrimidine and thienopyridine compounds and methods of use thereof. In particular embodiments, the present disclosure provides compositions comprising thienopyrimidine and thienopyridine compounds of Formula 3: and methods of use to inhibit the interaction of menin with MLL1, MLL2 and MLL-fusion oncoproteins.
Abstract:
The present disclosure provides compounds and methods for inhibiting the interaction of menin with its upstream or downstream signaling molecules including but not limited to MLL1, MLL2 and MLL-fusion oncoproteins. Compounds of the disclosure may be used in methods for the treatment of a wide variety of cancers and other diseases associated with one or more of MLL1, MLL2, MLL fusion proteins, and menin.
Abstract:
The present disclosure relates generally to thienopyrimidine and thienopyridine compounds and methods of use thereof. In particular embodiments, the present disclosure provides compositions comprising thienopyrimidine and thienopyridine compounds of Formula 2: and methods of use to inhibit the interaction of menin with MLL1, MLL2 and MLL-fusion oncoproteins.
Abstract:
Inhibitors of Bcl-2/Bcl-xL and compositions containing the same are disclosed. Methods of using the Bcl-2/Bcl-xL inhibitors in the treatment of diseases and conditions wherein inhibition of Bcl-2/Bcl-xL provides a benefit, like cancers, also are disclosed.
Abstract:
The present provides amphiphilic block copolymer coated surfaces (e.g., nanoparticles, medical devices, etc.) and methods of preparing such surfaces. In certain embodiments, the present invention provides amphiphilic block copolymer coated single dispersed nanoparticles, which are stable in buffer (e.g., PBS) and have neutral but functionable surfaces, and methods of preparing the same.
Abstract:
The present invention provides methods, compositions, systems, and kits comprising nano-satellite complexes and/or serum albumin carrier complexes, which are used for modulating antigen-specific immune response (e.g., enhancing anti-tumor immunity). In certain embodiments, the nano-satellite complexes comprise: a) a core nanoparticle complex comprising a biocompatible coating surrounding a nanoparticle core; b) at least one satellite particle attached to, or absorbed to, the biocompatible coating; and c) an antigenic component conjugated to, or absorbed to, the at least one satellite particle component. In certain embodiments, the complexes further comprise: d) an type I interferon agonist agent. In some embodiments, the serum albumin complexes comprise: a) at least part of a serum albumin protein, b) an antigenic component conjugated to the carrier protein, and c) a type I interferon agonist agent.
Abstract:
The present invention provides methods, compositions, systems, and kits comprising core-satellite nanocomposites useful for photothermal and/or MRI applications (e.g., tumor treatment and/or imaging). In certain embodiments, the core-satellite nanocomposites comprise: i) a core nanoparticle complex comprising a biocompatible coating surrounding a nanoparticle core, and ii) at least one satellite component attached to, or absorbed to, the biocompatible coating. In some embodiments, the nanoparticle core and satellite component are composed of near-infrared photothermal agent material and/or MRI contrast agent material. In further embodiments, the satellite component is additionally or alternatively composed of near-infrared optical dye material.
Abstract:
Inhibitors of BET bromodomains and compositions containing the same are disclosed. Methods of using the BET bromodomain inhibitors in the treatment of diseases and conditions wherein inhibition of BET bromodomain provides a benefit, like cancers, also are disclosed.
Abstract:
The present disclosure provides compounds and methods for inhibiting the interaction of menin with its upstream or downstream signaling molecules including but not limited to MLL1, MLL2 and MLL-fusion oncoproteins. Compounds of the disclosure may be used in methods for the treatment of a wide variety of cancers and other diseases associated with one or more of MLL1, MLL2, MLL fusion proteins, and menin.