Abstract:
A coil apparatus for use in a transcranial magnetic stimulation apparatus is provided in which the coil apparatus includes a coil arranged to oppose a surface of a head of a human to generate a current by an induced electric field in a magnetic stimulation-target region in a brain by electromagnetic induction, and to stimulate neurons. The coil apparatus includes the coil configured by winding a conductive wire along a predetermined reference surface; and a magnetic body arranged between the head and the coil to oppose the coil, and arranged at a position at an opposite side of the head. The magnetic body is provided for flowing a current therein by an induced electric field when the coil is driven, and for increasing the current flowing by the induced electric field in a magnetic stimulation-target region of the brain as compared with that with no magnetic body.
Abstract:
An intracerebral current simulation method including a first step of providing head image data; a second step of forming a three-dimensional brain model including micro-polyhedron units; a third step of providing first information which includes conditions under which a coil is placed on a patient's head, an electric current is applied to the coil, and the patient's reaction to the magnetic stimulation is observed, the conditions including a position and orientation of the coil, an electric current applied to the coil, and a structure relating to a generated magnetic field of the coil; and a fourth step of calculating an eddy current or electric field induced inside each of the micro-polyhedron units on the basis of the first information provided in the third step and second information which includes conductivity assigned to each micro-polyhedron unit. Also disclosed is a transcranial magnetic stimulation device and system.
Abstract:
A coil apparatus for use in a transcranial magnetic stimulation apparatus is provided to further increase an electric field intensity on a head surface. The coil apparatus includes a wound-wire coil disposed on or near a head surface so as to generate a current by an induced electric field through electromagnetic induction in a magnetic stimulation-target region of a brain for stimulating neurons. The wound-wire coil includes a near-head-surface conductive wire portion disposed on or near the head surface, and a far-head-surface conductive wire portion disposed farther from the head surface than the near-head-surface conductive wire portion. A distance between the near-head-surface conductive wire portion and the far-head-surface conductive wire portion is set to be changed so that an intensity of the induced electric field becomes larger than that of a surrounding region of the magnetic stimulation-target region.
Abstract:
A coil device for transcranial magnetic stimulation treatment, that generates an overcurrent uniformly across a wide range inside the head of a patient. The coil device includes a winding frame and a coil. A cylindrical surface of the winding frame has: an inner surface section arranged near the cranial surface during use; and an outer surface section forming a convex curved surface protruding towards the outside of the cylindrical surface, relative to a first direction parallel to a neutral axis and a second direction orthogonal to the first direction. The neutral axis draws a convex curve.
Abstract:
A coil apparatus for use in a transcranial magnetic stimulation apparatus is provided to further increase an electric field intensity on a head surface. The coil apparatus includes a wound-wire coil disposed on or near a head surface so as to generate a current by an induced electric field through electromagnetic induction in a magnetic stimulation-target region of a brain for stimulating neurons. The wound-wire coil includes a near-head-surface conductive wire portion disposed on or near the head surface, and a far-head-surface conductive wire portion disposed farther from the head surface than the near-head-surface conductive wire portion. A distance between the near-head-surface conductive wire portion and the far-head-surface conductive wire portion is set to be changed so that an intensity of the induced electric field becomes larger than that of a surrounding region of the magnetic stimulation-target region.
Abstract:
A coil 31 has 1st to Nth turns 311 to 31N. The 1st to Nth turns 311 to 31N are respectively provided with actuation parts 311a for current in one direction to flow, and connection parts 311b for current in the opposite direction to the one direction to flow. The plurality of actuation parts 311a are arranged substantially parallel to each other, and are arranged along a surface of an object 1 or a surface that approximates to the surface of the object 1. A plurality of connection parts 311b are arranged within a space in which the connection parts do not face the surface of the object 1 over the actuation parts 311a of the 1st to Nth turns, and the connection parts are positioned at the sides with respect to the extension direction of the actuation parts 311a.