Abstract:
A microneedle includes a base having a support surface, and a projection that protrudes from the support surface, the projection having a through hole that penetrates the projection in an extending direction of the projection. The projection includes a flow path expansion section which is configured to expand a communication path that communicates between an inner space of the through hole and a space surrounding the projection in response to an increase in pressure of a fluid flowing in the through hole.
Abstract:
An operation tool for a fluid injector includes a selective movement mechanism which moves the fluid injector between a first protruding position and a second protruding position in a housing of an outer cylinder. When the fluid injector is at the first protruding position, microneedles of a multi-microneedle device are protruded out to a first distance from the first open end. When the fluid injector is at the second protruding position to discharge a fluid via the microneedles, the microneedles are protruded out to a second distance from the first open end, which is shorter than the first distance. The selective movement mechanism includes a rotational-linear movement conversion mechanism which moves the fluid injector between the first and second protruding positions along a longitudinal center line of the outer cylinder based on a direction and an amount of rotation of the outer cylinder relative to the fluid injector.
Abstract:
A cell transplantation device for placing a cell group at a target region in at least one of an intradermal layer and a subcutaneous layer in a living body, including a device body including a protruding portion having an accommodating portion for accommodating a liquid composition including the cell group. The protruding portion has an opening that communicates with the accommodating portion, and the protruding portion penetrates a skin surface of the living body such that the opening of the protruding portion reaches the at least one of the intradermal layer and the subcutaneous layer and that the cell group accommodated in the accommodating portion is placed at the target region through the opening.
Abstract:
An operation tool for a fluid injector includes a selective movement mechanism which moves the fluid injector between a first protruding position and a second protruding position in a housing of an outer cylinder. When the fluid injector is at the first protruding position, microneedles of a multi-microneedle device are protruded out to a first distance from the first open end. When the fluid injector is at the second protruding position to discharge a fluid via the microneedles, the microneedles are protruded out to a second distance from the first open end, which is shorter than the first distance. The selective movement mechanism includes a rotational-linear movement conversion mechanism which moves the fluid injector between the first and second protruding positions along a longitudinal center line of the outer cylinder based on a direction and an amount of rotation of the outer cylinder relative to the fluid injector.
Abstract:
An injection device including a microneedle structure including a substrate having a first surface and a second surface opposite to the first surface, and a protrusion protruding from the first surface in a direction opposite to the second surface, the protrusion having a through hole which penetrates from a tip of the protrusion to the second surface in the direction of the protrusion such that a liquid flows through the through hole, and one or more check valves positioned to stop the liquid flowing from the second surface.
Abstract:
An injection device including a microneedle structure including a substrate having a first surface and a second surface opposite to the first surface, and a protrusion protruding from the first surface in a direction opposite to the second surface, the protrusion having a through hole which penetrates from a tip of the protrusion to the second surface in the direction of the protrusion such that a liquid flows through the through hole, and one or more check valves positioned to stop the liquid flowing from the second surface.
Abstract:
A puncture injection instrument including a hollow needle body including a substrate having a first surface and a second surface opposite to the first surface, the hollow needle body having one or more projections which are formed on the first surface and each have a through hole penetrating from a distal end of the projection to the second surface of the substrate, and one or more probes positioned outside a region where the one or more projections are formed. The one or more probes include an ultrasound probe or an optical coherence tomography probe.
Abstract:
A method of manufacturing a microneedle including forming a plurality of first linear grooves on a substrate in parallel to one another along a first direction using grinding and forming a plurality of second linear grooves on the substrate in parallel to one another in a second direction intersecting the first direction using grinding. At least one of the forming of a plurality of first linear grooves and the forming of a plurality of second linear grooves includes forming first stage grooves using a first dicing blade; and processing the first stage grooves by tracing the first stage grooves using a second dicing blade having a side surface different from that of the first dicing blade to thereby form second stage grooves.
Abstract:
A method of manufacturing a microneedle including forming a plurality of first linear grooves on a substrate in parallel to one another along a first direction using grinding and forming a plurality of second linear grooves on the substrate in parallel to one another in a second direction intersecting the first direction using grinding. At least one of the forming of a plurality of first linear grooves and the forming of a plurality of second linear grooves includes forming first stage grooves using a first dicing blade; and processing the first stage grooves by tracing the first stage grooves using a second dicing blade having a side surface different from that of the first dicing blade to thereby form second stage grooves.
Abstract:
An injection instrument including a hollow needle body including a substrate having a first surface and a second surface opposite to the first surface, the hollow needle body having at least one projection which is formed on the first surface and has a through hole penetrating from a distal end of the at least one projection to the second surface of the substrate, a deforming member positioned outside a region where the at least one projection is formed, the deforming member being deformable to bulge in a bulging direction along a projecting direction of the at least one projection beyond a plane flush with the first surface, and a pressure channel through which a fluid is supplied such that a fluid pressure is applied to the deforming member. The deforming member is deformable in the bulging direction in response to the fluid pressure.