摘要:
A high-pressure tank includes: a liner; an epoxy resin; a fiber; and a fiber-reinforced epoxy resin layer formed on an outer side of the liner. The epoxy resin has a contact angle on polytetrafluoroethylene ((C2F4)n) of 70° or less in an uncured state.
摘要:
A tank production method for preventing generation of non-uniform stacked portions in a sheet layer while securing the strength of the tank, the method including a winding step of winding resin-impregnated fiber sheets to form a sheet layer with a predetermined thickness. The winding step includes divided winding steps of winding divided fiber sheets obtained by dividing a fiber sheet into a plurality of divided fiber sheets having a length shorter than the length required to form the sheet layer with the predetermined thickness. The second divided winding step or each of the second and following divided winding step satisfies an Inequality: X>(σ·t·L)/(A·W), where an overlapped length of the start end of a new divided fiber sheet stacked on the terminal end of the divided fiber sheet wound in the preceding divided winding step is X, the tensile stress applied to the tank in the circumferential direction thereof is σ, the thickness and width of each divided fiber sheet are t and W, respectively, the length of a cylindrical portion of the tank is L, and the shearing strength of the resin is A.
摘要:
A high-pressure tank includes a liner, a release agent layer disposed on a surface of the liner, and a reinforcing layer disposed on the release agent layer. The reinforcing layer includes a resin and a fiber. The thickness of the release agent layer is equal to or smaller than the diameter of the fiber of the reinforcing layer.
摘要:
A manufacturing method of a tank including a tubular body portion, and dome-shaped side end portions formed on both sides of the body portion, the manufacturing method includes forming a tubular compact serving as at least part of the body portion from one fiber reinforced resin sheet by winding the fiber reinforced resin sheet including reinforced fibers impregnated with thermoplastic resin is wound several times around a peripheral surface of a core from a direction perpendicular to an axial center of the core in a state where the thermoplastic resin is melted.
摘要:
A method of producing a fiber-reinforced resin-molded member includes: preparing a mold including an upper mold and a lower mold forming a cavity, a cavity surface of either the upper mold or the lower mold being provided with a projecting portion; disposing a fiber-reinforcing material in the cavity, closing the molds to generate a state in which the projecting portion presses a part of the fiber-reinforcing material, and filling the cavity with a melted resin to impregnate the fiber-reinforcing material with the melted resin and cure the melted resin; and opening the molds to obtain a fiber-reinforced resin-molded member having an exposed portion and an embedded portion. The exposed portion includes at least a portion pressed by the projecting portion while the molds are closed.
摘要:
An object of the invention is to provide molded urethane foam pads and vehicle seats that can contribute to the reduction of environmental load and have appropriate impact resilience and hardness and excellent durability with good balance, and also have high comfort. A molded urethane foam pad for vehicle seats including a polyurethane is obtainable by foaming and curing materials including a plant-derived polyol (A), a non-plant-derived polyol (B), water, a catalyst, a foam stabilizer and a polyisocyanate, and has a core density of 55 to 65 kg/m3 as measured in accordance with JIS K6400; the plant-derived polyol (A) is a polyol which is obtained by condensing a polyhydric alcohol of 6 hydroxyl groups with a plant-derived, C15 or higher hydroxycarboxylic acid and which has a hydroxyl value of 45 to 55 mg KOH/g; the non-plant-derived polyol (B) is a polyol having a hydroxyl value of 18 to 26 mg KOH/g, and/or a polymer-dispersed polyol in which fine particles of a polymer of a compound having an unsaturated bond are dispersed in the polyol; and the polyurethane contains a plant-derived molecular structure and the content of the plant-derived molecular structure is 15 to 20 wt % based on 100 wt % of the molded urethane foam pad.