Abstract:
A gas sensor includes a sensor element body having a porous layer provided on an outer surface, and a power supply device which supplies power to a heater element that is in the sensor element body. The amount of power being applied to the heater element by the power supply device when gas detection is being performed by the gas sensor in a steady state is designated as P [W], the volume of the length range of a heating region of the heater element provided in the sensor element body as V [mm3], and the applied power density as X [W/mm3], where X is a value expressed by P/V. In that case, the following relationship is satisfied between the applied power density X and the average thickness Y [μm] of the porous layer: Y≥509.32−2884.89X+5014.12X2
Abstract:
The present disclosure provides a gas sensor element comprising a porous protective layer with improved water repellency upon continuously water pouring, which is a gas sensor element comprising: a detection portion; and a porous protective layer formed around the detection portion, wherein the porous protective layer is formed from an aggregate containing alumina and a coating material containing silica, and in the porous protective layer, the weight concentration x % by weight of the coating material with respect to the total weight of the aggregate and the coating material, and the porosity y %, satisfy the following formula (1): y≤0.0058x2-1.2666x+68 (1), and in the porous protective layer, the pore volume of pores having a pore diameter of 100 nm or less is 0.02 mL/g or less.
Abstract:
A gas sensor element with suppressed response deterioration even when poisoned with S when fuel or exhaust gas contains ethanol and the ethanol content is high. The element includes a detection portion, which includes a solid electrolyte layer having a pair of electrodes on opposite sides thereof, a shielding layer defining a measurement target gas space with a porous diffusive resistance layer, and a reference gas space protective layer; a heat-generating portion stacked on the detection portion; and a porous protective layer surrounding the detection portion and heat-generating portion. The porous protective layer includes a first porous protective layer surrounding at least the porous diffusive resistance layer, and a second porous protective layer surrounding the first porous protective layer, the detection portion and the heat-generating portion. The first porous protective layer contains none of La, Ca, or Mg, while the second porous protective layer contains at least one of them.
Abstract:
A gas sensor includes a sensor element body having a porous layer provided on an outer surface, and a power supply device which supplies power to a heater element that is in the sensor element body. The amount of power being applied to the heater element by the power supply device when gas detection is being performed by the gas sensor in a steady state is designated as P [W], the volume of the length range of a heating region of the heater element provided in the sensor element body as V [mm3], and the applied power density as X [W/mm3], where X is a value expressed by P/V. In that case, the following relationship is satisfied between the applied power density X and the average thickness Y [μm] of the porous layer: Y≥509.32−2884.89X+5014.12X2
Abstract:
A gas sensor element having a porous protective layer with excellent water repellency. Provided is a gas sensor element having a detection portion, which has a stack of a solid electrolyte body having a pair of electrodes on opposite sides thereof and a heat generating body including a heat generating source, and a porous protective layer formed around the detection portion. The porous protective layer has thermal conductivity λ in the range of 0.2 to 5 W/mK, and has λCpp, which is the product of the thermal conductivity λ(W/mK), density ρ(g/m3), and specific heat Cp(J/gK), in the range of 5.3×105 to 2.1×107 WJ/m4K2.
Abstract:
The present disclosure provides a radio wave transmissive metallic member having an excellent metallic luster. The present disclosure relates to a metallic member and a method for manufacturing the same. The metallic member comprises a substrate body, an ion-exchange resin layer formed on the substrate body, and a metal particle layer formed on the ion-exchange resin layer, wherein metal particles having a high aspect ratio are longitudinally oriented with respect to the ion-exchange resin layer and the substrate body.
Abstract:
A coating film has a multilayer structure including stacked nanosheets of an inorganic oxide and has a thickness of a certain level or more, as well as a composite material containing a metallic material and the coating film provided on the metallic material.
Abstract:
The invention relates to a malfunction diagnosis device for an exhaust gas purification catalyst of an engine. The device calculates, on the basis of a parameter of the engine other than an output value of a NOx concentration sensor, (a) an estimated NO concentration of the exhaust gas and expected to flow out from the catalyst and (b) an estimated particular component concentration of the exhaust gas and expected to flow out from the catalyst. The device calculates an expected output value such that the expected output value calculated when the influence parameter value is a first value is smaller than the expected output value calculated when the influence parameter value is a second value, the expected output value being an output value which is expected to be output from the sensor when the exhaust gas, which includes NO having the expected NO concentration and the particular component having the expected particular component concentration, reaches the sensor. The device diagnoses that a malfunction occurs in the catalyst when the output value of the sensor is equal to or larger than a malfunction diagnosis threshold defined on the basis of the expected output value.