Abstract:
A mid-range vinylidene content, high viscosity PIB polymer composition including PIB molecules, wherein a first portion of the PIB molecules have alpha position double bonds and a second portion of the PIB molecules have beta position double bonds, and the first and second portions together include at least 80 mole % of the PIB molecules of the composition. The first portion includes less than 75 mole % of the PIB molecules of the composition. Additionally, no more than 10 mole % of the PIB molecules of the composition have tetra-substituted double bonds, while the composition is further characterized by having a polydispersity of no more than 2.7 and in that the composition has a kinematic viscosity in the range of 3000 cSt to 5000 cSt, a number average molecular weight, Mn, in the range of 2800 Daltons to 4000 Daltons and a ratio of Mn:PDI of greater than 1100.
Abstract:
In one preferred embodiment, the present invention provides a process for the liquid phase polymerization of isobutylene to manufacture highly reactive PIB oligomers having Mn under 1000, using a catalyst composition comprising a Friedel-Crafts catalyst a complexing agent, a chain transfer agent and a polymerization-retarding agent. A chain transfer agent may be selected from: α-DIB and β-DIB and mixtures thereof. A polymerization-retarding agent may be selected from:
Abstract:
A method of making a polyisobutylene polymer in a recirculating loop reactor with one or more reaction tubes in contact with a heat transfer medium includes controlling the delta P and polymerization reaction to provide a linear velocity of the reaction mixture of at least 11 ft/sec in the one or more tubes of the loop reactor and/or controlling the delta P and polymerization reaction of steps (b) and (c) to provide a recirculation ratio of the recirculation rate to the feed rate of at least 30:1. Typically, the process utilizes a recirculating pump operating at a at a pressure differential of from 35 psi to 70 psi.
Abstract:
A method of making a polyisobutylene polymer in a recirculating loop reactor with one or more reaction tubes in contact with a heat transfer medium includes: (a) providing a feed mixture consisting essentially of polymerizable monomer and catalyst to a residual reactor stream at a feed rate to form a reaction mixture, the reaction mixture containing less than 5% by weight diluent components; (b) recirculating the reaction mixture in the one or more reaction tubes of the loop reactor at a recirculation rate greater than the feed rate utilizing a recirculating pump operating at a pressure differential, delta P, corresponding to a recirculating flow; (c) polymerizing the reaction mixture in the one or more tubes of the loop reactor to convert the feed mixture to polyisobutylene polymer while cooling the one or more tubes of the loop reactor with the heat transfer medium; and (e) withdrawing polyisobutylene polymer from the loop reactor.
Abstract:
A mid-range vinylidene content, high viscosity PIB polymer composition including PIB molecules, wherein a first portion of the PIB molecules have alpha position double bonds and a second portion of the PIB molecules have beta position double bonds, and the first and second portions together include at least 80 mole % of the PIB molecules of the composition. The first portion includes less than 75 mole % of the PIB molecules of the composition. Additionally, no more than 10 mole % of the PIB molecules of the composition have tetra-substituted double bonds, while the composition is further characterized by having a polydispersity of no more than 2.7 and in that the composition has a kinematic viscosity in the range of 3000 cSt to 5000 cSt, a number average molecular weight, Mn, in the range of 2800 Daltons to 4000 Daltons and a ratio of Mn:PDI of greater than 1100.
Abstract:
In one preferred embodiment, the present invention provides a process for the liquid phase polymerization of isobutylene to manufacture highly reactive PIB oligomers having Mn under 1000, using a catalyst composition comprising a Friedel-Crafts catalyst a complexing agent, a chain transfer agent and a polymerization-retarding agent. A chain transfer agent may be selected from: α-DIB and β-DIB and mixtures thereof. A polymerization-retarding agent may be selected from:
Abstract:
A method of making a polyisobutylene polymer in a recirculating loop reactor with one or more reaction tubes in contact with a heat transfer medium includes controlling the delta P and polymerization reaction to provide a linear velocity of the reaction mixture of at least 11 ft/sec in the one or more tubes of the loop reactor and/or controlling the delta P and polymerization reaction of steps (b) and (c) to provide a recirculation ratio of the recirculation rate to the feed rate of at least 30:1. Typically, the process utilizes a recirculating pump operating at a at a pressure differential of from 35 psi to 70 psi.
Abstract:
A method of making a polyisobutylene polymer in a recirculating loop reactor with one or more reaction tubes in contact with a heat transfer medium includes: (a) providing a feed mixture consisting essentially of polymerizable monomer and catalyst to a residual reactor stream at a feed rate to form a reaction mixture, the reaction mixture containing less than 5% by weight diluent components; (b) recirculating the reaction mixture in the one or more reaction tubes of the loop reactor at a recirculation rate greater than the feed rate utilizing a recirculating pump operating at a pressure differential, delta P, corresponding to a recirculating flow; (c) polymerizing the reaction mixture in the one or more tubes of the loop reactor to convert the feed mixture to polyisobutylene polymer while cooling the one or more tubes of the loop reactor with the heat transfer medium; and (e) withdrawing polyisobutylene polymer from the loop reactor.
Abstract:
A PIB derivative suitable for use as a fuel additive or lubricant additive prepared from a reactive low molecular weight polyisobutylene composition comprising at least 50 mol percent alpha vinylidene terminated polyisobutylene molecules, the composition having a polydispersity of no more than 1.5 and a number average molecular weight of at least 500 Daltons and no more than 1000 Daltons. The derivative is selected from the group consisting of: alkyl hydroxyaromatic compounds; alkyl alkoxy aromatic compounds; polyisobutenylsuccinic anhydrides; polyisobutenylsuccinimides; PIB-amine compounds; sulfurized PIB compounds; and Mannich condensation products of an alkylated hydroxyaromatic compound.
Abstract:
A PIB derivative suitable for use as a fuel additive or lubricant additive prepared from a reactive low molecular weight polyisobutylene composition comprising at least 50 mol percent alpha vinylidene terminated polyisobutylene molecules, the composition having a polydispersity of no more than 1.5 and a number average molecular weight of at least 500 Daltons and no more than 1000 Daltons. The derivative is selected from the group consisting of: alkyl hydroxyaromatic compounds; alkyl alkoxy aromatic compounds; polyisobutenylsuccinic anhydrides; polyisobutenylsuccinimides; PIB-amine compounds; sulfurized PIB compounds; and Mannich condensation products of an alkylated hydroxyaromatic compound.