摘要:
An apparatus for detecting a switching current of the power converter, wherein the apparatus includes a signal generation circuit, a sample-and-hold circuit, and a calculating circuit. The signal generation circuit generates a sample signal in accordance with the pulse width of a switching signal. The sample-and-hold circuit is coupled to receive the sample signal and switching current signal for generating a first current signal and a second current signal. The calculating circuit is coupled to receive the first current signal and the second current signal for generating output signals. The switching signal is used for switching the magnetic device of the power converter, and the switching current signal is correlated to the switching current of the power converter; the output signals are correlated to the value of the switching current of the power converter.
摘要:
A control circuit of the power converter according to the present invention comprises a feedback circuit, an output circuit and an adaptive clamping circuit. The feedback circuit generates a feedback signal in accordance with an output of the power converter. The output circuit generates a switching signal in accordance with the feedback signal for regulating the output of the power converter. The adaptive clamping circuit limits the level of the feedback signal under a first level for a first load condition. The feedback circuit determines a slew rate of the feedback signal for increasing the level of the feedback signal from the first level to a second level. The adaptive clamping circuit is disabled and the level of the feedback signal can be increased to the second level for a second load condition.
摘要:
An adaptive filter circuit for sampling a reflected voltage of a transformer of a power converter includes a first switch for receiving the reflected voltage, a resistor having a first terminal and a second terminal, the first terminal of the resistor being coupled to the first switch, a capacitor coupled to the second terminal of the resistor for holding the reflected voltage, and a second switch coupled to the resistor in parallel, wherein the resistor and the capacitor develop a filter for sampling the reflected voltage which is sampled without filtering by the filter in a first period during a disable period of a switching signal and also sampled with filtering by the filter in a second period during the disable period of the switching signal.
摘要:
A controller for a power converter is provided. The controller includes a PWM circuit, a detection circuit, a signal generation circuit and an oscillation circuit. The PWM circuit generates a switching signal coupled to switch a transformer of the power converter. A feedback signal is coupled to the PWM circuit to disable the switching signal. The detection circuit is coupled to the transformer via a resistor for generating a valley signal in response to a signal waveform of the transformer. The signal generation circuit is coupled to receive the feedback signal and the valley signal for generating an enabling signal. The oscillation circuit generates a maximum frequency signal. The maximum frequency signal associates with the enabling signal to generate a pulse signal. The feedback signal is correlated to an output load of the power converter. The maximum frequency of the pulse signal is limited.
摘要:
The present invention provides a control circuit for a power converter. The control circuit includes a switching circuit, an input-voltage detection circuit and a current-limit threshold. The switching circuit generates a switching signal coupled to switch a transformer of the power converter for regulating an output of the power converter in response to a feedback signal. The input-voltage detection circuit generates a control signal when an input voltage of the power converter is lower than a low-input threshold. The feedback signal is generated in response to the output of the power converter. A maximum duty of the switching signal is increased in response to the control signal. The current-limit threshold is for limiting a maximum value of a switching current flowing through the transformer. The current-limit threshold is increased in response to the control signal. An input of the power converter doesn't connect with electrolytic bulk capacitors.
摘要:
A controller of a power converter is provided. The controller includes a feedback circuit, an output circuit, and a clamping circuit. The feedback circuit generates a feedback signal in accordance with output of the power converter. The output circuit generates a switching signal in accordance with the feedback signal for regulating the output of the power converter. The clamping circuit limits the feedback signal under a first level for a first load condition and limits the feedback signal under a second level for a second load condition. The clamping circuit includes a timer circuit. The timer circuit determines a slew rate of the feedback signal for increasing the feedback signal from the first level to the second level, and the second level is higher than the first level.
摘要:
The present invention proposes a switching controller of a flyback power converter. The switching controller includes a switching circuit, a sample-and-hold circuit, a voltage detection circuit, an oscillation circuit, and a comparator. The voltage detection circuit generates a holding signal when a level of an input voltage of the flyback power converter is lower than a low-threshold. The oscillation circuit limits the maximum frequency of switching signal. The maximum frequency is increased in response to a decrement of a modulation signal. The modulation signal correlated with a level of the input voltage is used to generate a control signal when the level of the input voltage is lower than an ultra-low-threshold. The control signal is enabled to operate the flyback power converter in continuous current mode operation. Therefore, an input capacitor can be eliminated and manufacturing cost is saved.
摘要:
A method for controlling a power converter is provided. The method includes the following steps. A switching signal coupled to switch a transformer for regulating the output of the power converter is generated in accordance with a feedback signal and a ramp signal. The ramp signal is generated in accordance with a switching current signal and a slope compensation signal. The slope compensation signal is generated in response to an input voltage signal. The input voltage signal is generated in response to the level of the input voltage of the power converter. The feedback signal is generated in accordance with the output of the power converter, and the switching current signal is correlated with a switching current of the transformer.
摘要:
A control circuit of a LED driver according to the present invention comprises an output circuit, an input circuit and an input-voltage detection circuit. The output circuit generates a switching signal to produce an output current for driving at least one LED in response to a feedback signal. The switching signal is coupled to switch a transformer. The input circuit samples an input signal for generating the feedback signal. The input signal is correlated to the output current of the LED driver. The input-voltage detection circuit generates an input-voltage signal in response to an input voltage of the LED driver. The input circuit will not sample the input signal when the input-voltage signal is lower than a threshold. The control circuit can eliminate the need of the input capacitor for improving the reliability of the LED driver.
摘要:
A method for controlling a power converter is provided. The method includes the following steps. A switching signal coupled to switch a transformer for regulating the output of the power converter is generated in accordance with a feedback signal and a ramp signal. The ramp signal is generated in accordance with a switching current signal and a slope compensation signal. The slope compensation signal is generated in response to an input voltage signal. The input voltage signal is generated in response to the level of the input voltage of the power converter. The feedback signal is generated in accordance with the output of the power converter, and the switching current signal is correlated with a switching current of the transformer.