摘要:
An electron injected APD with an embedded n electrode structure in which edge breakdown can be suppressed without controlling the doping profile of an n-type region of the embedded n electrode structure with high precision. The APD comprising a buffer layer with a low ionization rate is inserted between an n electrode connecting layer and an avalanche multiplication layer. Specifically, the APD is an electron injected APD in which an n electrode layer, the n electrode connecting layer, the buffer layer, the avalanche multiplication layer, an electric field control layer, a band gap gradient layer, a low-concentration light absorbing layer, a p-type light absorbing layer, and a p electrode layer are sequentially stacked, and a light absorbing portion that includes at least the low-concentration light absorbing layer and the p-type light absorbing layer forms a mesa shape.
摘要:
An electron injected APD with an embedded n electrode structure in which edge breakdown can be suppressed without controlling the doping profile of an n-type region of the embedded n electrode structure with high precision. The APD comprising a buffer layer with a low ionization rate is inserted between an n electrode connecting layer and an avalanche multiplication layer. Specifically, the APD is an electron injected APD in which an n electrode layer, the n electrode connecting layer, the buffer layer, the avalanche multiplication layer, an electric field control layer, a band gap gradient layer, a low-concentration light absorbing layer, a p-type light absorbing layer, and a p electrode layer are sequentially stacked, and a light absorbing portion that includes at least the low-concentration light absorbing layer and the p-type light absorbing layer forms a mesa shape.
摘要:
An APD is provided with the semi-insulating substrate, a first mesa having a first laminate constitution in which a p-type electrode layer, a p-type light absorbing layer, a light absorbing layer with a low impurity concentration, a band gap inclined layer, a p-type electric field control layer, an avalanche multiplier layer, an n-type electric field control layer, and an electron transit layer with a low impurity concentration are stacked in this order on a surface of the semi-insulating substrate, a second mesa having an outer circumference provided inside an outer circumference of the first mesa as viewed from the laminating direction and having a second laminate constitution in which an n-type electrode buffer layer and an n-type electrode layer are stacked in this order on a surface on the electron transit layer side, and a depletion control region that is provided in layers on the second mesa side relative to the p-type electric field control layer, formed in an encircling portion provided inside an outer circumference of the first mesa and encircling an outer circumference of the second mesa, and prevents the encircling portion of the p-type electric field control layer from being depleted when bias is applied.
摘要:
An APD is provided with a semi-insulating substrate, a first mesa having a first laminate constitution in which a p-type electrode layer, a p-type light absorbing layer, a light absorbing layer with a low impurity concentration, a band gap inclined layer, a p-type electric field control layer, an avalanche multiplier layer, an n-type electric field control layer, and an electron transit layer with a low impurity concentration are stacked in this order on a surface of the semi-insulating substrate, a second mesa having an outer circumference provided inside an outer circumference of the first mesa as viewed from the laminating direction and having a second laminate constitution in which an n-type electrode buffer layer and an n-type electrode layer are stacked in this order on a surface on the electron transit layer side of the first mesa, and in the APD, a total donor concentration of the n-type electric field control layer is lower than a total acceptor concentration of the p-type electric field control layer in a range of 2×1011 to 1×1012/cm2.
摘要:
A layer in which the potential level difference normally unrequired for device operation is generated is positively inserted in a device structure. The potential level difference has such a function that even if a semiconductor having a small bandgap is exposed on a mesa side surface, a potential drop amount of the portion is suppressed, and a leakage current inconvenient for device operation can be reduced. This effect can be commonly obtained for a heterostructure bipolar transistor, a photodiode, an electroabsorption modulator, and so on. In the photodiode, since the leakage current is alleviated, the device size can be reduced, so that in addition to improvement of operating speed with a reduction in series resistance, it is advantageous that the device can be densely disposed in an array.
摘要:
An APD is provided with the semi-insulating substrate, a first mesa having a first laminate constitution in which a p-type electrode layer, a p-type light absorbing layer, a light absorbing layer with a low impurity concentration, a band gap inclined layer, a p-type electric field control layer, an avalanche multiplier layer, an n-type electric field control layer, and an electron transit layer with a low impurity concentration are stacked in this order on a surface of the semi-insulating substrate, a second mesa having an outer circumference provided inside an outer circumference of the first mesa as viewed from the laminating direction and having a second laminate constitution in which an n-type electrode buffer layer and an n-type electrode layer are stacked in this order on a surface on the electron transit layer side, and a depletion control region that is provided in layers on the second mesa side relative to the p-type electric field control layer, formed in an encircling portion provided inside an outer circumference of the first mesa and encircling an outer circumference of the second mesa, and prevents the encircling portion of the p-type electric field control layer from being depleted when bias is applied.
摘要:
A layer in which the potential level difference normally unrequired for device operation is generated is positively inserted in a device structure. The potential level difference has such a function that even if a semiconductor having a small bandgap is exposed on a mesa side surface, a potential drop amount of the portion is suppressed, and a leakage current inconvenient for device operation can be reduced. This effect can be commonly obtained for a heterostructure bipolar transistor, a photodiode, an electroabsorption modulator, and so on. In the photodiode, since the leakage current is alleviated, the device size can be reduced, so that in addition to improvement of operating speed with a reduction in series resistance, it is advantageous that the device can be densely disposed in an array.
摘要:
An APD is provided with a semi-insulating substrate, a first mesa having a first laminate constitution in which a p-type electrode layer, a p-type light absorbing layer, a light absorbing layer with a low impurity concentration, a band gap inclined layer, a p-type electric field control layer, an avalanche multiplier layer, an n-type electric field control layer, and an electron transit layer with a low impurity concentration are stacked in this order on a surface of the semi-insulating substrate, a second mesa having an outer circumference provided inside an outer circumference of the first mesa as viewed from the laminating direction and having a second laminate constitution in which an n-type electrode buffer layer and an n-type electrode layer are stacked in this order on a surface on the electron transit layer side of the first mesa, and in the APD, a total donor concentration of the n-type electric field control layer is lower than a total acceptor concentration of the p-type electric field control layer in a range of 2×1011 to 1×1012/cm2.
摘要:
In an electron-injection type APD, it is necessary to prevent a dark current increase and to secure the life time of the device. It is demanded to improve reliability of the APD with a lower production cost. With the InP buffer layer having an n-type doping region on the inside of a region defined by an optical absorption layer, a predetermined doping profile is achieved by ion implantation. Thus, electric field concentration in the avalanche multiplication layer is relaxed. Furthermore, a low-concentration second optical absorption layer is provided between the optical absorption layer and the avalanche multiplication layer. Responsivity of the optical absorption layer is maximized, and depletion of the lateral surface of the optical absorption layer is prevented; thus, electric field concentration is prevented. Preventing edge breakdown, the device improves its reliability.
摘要:
In an electron-injection type APD, it is necessary to prevent a dark current increase and to secure the life time of the device. It is demanded to improve reliability of the APD with a lower production cost. With the InP buffer layer having an n-type doping region on the inside of a region defined by an optical absorption layer, a predetermined doping profile is achieved by ion implantation. Thus, electric field concentration in the avalanche multiplication layer is relaxed. Furthermore, a low-concentration second optical absorption layer is provided between the optical absorption layer and the avalanche multiplication layer. Responsivity of the optical absorption layer is maximized, and depletion of the lateral surface of the optical absorption layer is prevented; thus, electric field concentration is prevented. Preventing edge breakdown, the device improves its reliability.