摘要:
An Fe-Ni alloy sheet for a shadow mask excellent in etching pierceability, preventing sticking during annealing, and inhibiting production of gases, which consists essentially of:______________________________________ nickel (Ni) from 34 to 38 wt. %, silicon (Si) from 0.01 to 0.09 wt. %, aluminum (Al) from 0.002 to 0.020 wt. %, calcium (Ca) from 0.0002 to 0.0020 wt. %, magnesium (Mg) from 0.0003 to 0.0020 wt. %, where, Ca + 1/2 Mg from 0.0005 to 0.0025 wt. %, ______________________________________ andthe balance being iron and incidental impurities,where, the contents of carbon (C), nitrogen (N), sulfur (S), oxygen (O) and phosphorus (P) as the incidental impurities being respectively:up to 0.0050 wt.% for carbon,up to 0.0020 wt.% for nitrogen,up to 0.0020 wt.% for sulfur,up to 0.0040 wt.% for oxygen, andup to 0.0040 wt.% for phosphorus,where, 1/10 C+1/10 N+S+1/5 O+1/2P:up to 0.0045 wt.%, andCa+1/2 Mg.gtoreq.S+1/5 O; andthe surface portion of the Fe-Ni alloy sheet having a silicon (Si) segregation rate, as expressed by the following formula, of up to 10%: ##EQU1##
摘要:
An Fe-Ni alloy sheet for a shadow mask, which consists essentially of:nickel: from 34 to 38 wt. %,silicon: from 0.01 to 0.15 wt. %,manganese: from 0.01 to 1.00 wt. %, andthe balance being iron and incidental impurities.The surface portion of the alloy sheet has a silicon (Si) segregation rate, as expressed by the following formula, of up to 10%: ##EQU1## and a center-line mean roughness (Ra) of the alloy sheet satisfies the following formula:0.3 .mu.m
摘要:
An Fe-Ni alloy sheet excellent in hot workability, adhesivity to a plating layer and solderability, which consists essentially of:______________________________________ nickel (Ni): from over 38 to 52 wt. %, silicon (Si): from 0.01 to 0.15 wt. %, calcium (Ca): from 0.0002 to 0.0020 wt. %, magnesium (Mg): from 0.0003 to 0.0020 wt. %, where, Ca + 1/2Mg: from 0.0005 to 0.0025 wt. %, ______________________________________ and the balance being iron and incidental impurities,where, the contents of carbon (C), nitrogen (N), sulfur (S), oxygen (O), phosphorus (P) and aluminum (Al) as the incidental impurities being respectively:up to 0.0050 wt. % for carbon,up to 0.0020 wt. % for nitrogen,up to 0.0020 wt. % for sulfur,up to 0.0040 wt. % for oxygen,up to 0.0040 wt. % for phosphorus, andunder 0.010 wt.% for aluminum,where, 1/10 C+1/10 N+S+1/5 O +1/2 P.ltoreq.0.0045 wt. %, and ##EQU1## the surface portion of the Fe-Ni alloy sheet having a silicon (Si) segregation rate, as expressed by the following formula, of up to 10%: ##EQU2##
摘要翻译:热加工性,镀层的粘附性和可焊性优异的Fe-Ni合金薄板,其主要由以下组成:镍 - 镍(Ni):38〜52wt。 %, - 硅(Si):0.01〜0.15wt。 %, - 钙(Ca):0.0002〜0.0020重量% %, - 镁(Mg):0.0003〜0.0020wt。 %, - 其中,-Ca + 1 / 2Mg:0.0005-0.0025wt。 %, - 余量为铁和杂质,其中作为附带杂质的碳(C),氮(N),硫(S),氧(O),磷(P)和铝(Al)的含量 分别为:0.0050wt。 碳含量可达0.0020wt。 %,最高达0.0020wt。 硫含量为0.0040wt。 氧含量高达0.0040wt。 对于磷,在0.010重量%以下,对于铝,其中,1/10 C + 1/10 N + S + 1/5 O +1/2 P <0.0045重量% %,并且具有如下式所示的具有硅(Si)分离速率的Fe-Ni合金板的表面部分高达10%:
摘要:
An Fe-Ni alloy sheet for a shadow mask, which consists essentially of:nickel: from 34 to 38 wt. %,silicon: from 0.01 to 0.15 wt. %,manganese: from 0.01 to 1.00 wt. %, andthe balance being iron and incidental impurities;the surface portion of the alloy sheet having a silicon (si) segregation rate, as expressed by the following formula, of up to 10%: ##EQU1## and the alloy sheet having a surface roughness which satisfies all the following formulae (1) to (3):0.3 .mu.m.ltoreq.Ra.ltoreq.0.8 .mu.m (1)where, Ra: center-line mean roughness;3.ltoreq.Rkr.ltoreq.7 (2)where, Rkr: kurtosis which is a sharpness index in the height direction of the roughness curve; and ##EQU2## The above-mentioned alloy sheet is manufactured by: preparing an alloy sheet, which has the above-mentioned chemical composition, and imparting a surface roughness which satisfies all the above-mentioned formulae (1) to (3) to the both surfaces of the alloy sheet by means of a pair of dull rolls during the final rolling of the alloy sheet for that preparation. The thus manufactured alloy sheet is excellent in etching pierceability and free from seizure of the flat mask during the annealing thereof.
摘要:
A high-strength thin plate, such as for IC lead frames, of an iron-nickel-cobalt alloy which is able to withstand repeated bending and is corrosion resistance and etchable, the alloy containing 27 to 30 wt. % N:, 5 to 18 wt. % Co, 0.10 to 3.0 wt. % Mn, 0.10 wt. % or less Si, 0.010 to 0.075 wt. % C, 0.001 to 0.014 wt. % N, less than 2.0 ppm H, 0.0040 wt. % or less S, 0.004 wt. % or less P, 0.0050 wt. % or less O, 0.01 to 0.06 wt. % Cr, 0.01 to 1.0 wt. % Mo and the balance being Fe and unavoidable impurities wherein 63.5 wt. %.ltoreq.2Ni+Co+Mn.ltoreq.65 wt. % for Co 10 wt. %.
摘要:
A method for manufacturing an alloy sheet for a shadow mask is provided which includes: (i) annealing a hot-rolled sheet containing Fe and Ni at a temperature of 910.degree. to 990.degree. C.; (ii) cold-rolling the annealed hot-rolled sheet from step (i) to produce a cold-rolled sheet; (iii) crystallization annealing of the cold-rolled sheet from step (ii); (iv) cold-rolling the annealed cold rolled sheet from step (iii); (v) finish recrystallization annealing step of the cold-rolled sheet of step (iv); (vi) finish cold-rolling of the sheet from step (v) at a cold-rolling reduction ratio R (%) satisfying the following equations: 16.ltoreq.R.ltoreq.75 and 6.38 D-133.9.ltoreq.R.ltoreq.6.38 D-51.0 wherein D is the average austenite grain size in .mu.m; (vii) softening annealing the sheet from step (vi) at a temperature of 720.degree. to 790.degree. C. for 2 to 40 minutes before press-forming and at conditions of temperature T in .degree.C. and time t in minutes which satisfy the following equation:T.gtoreq.-53.8 log t+806.
摘要:
A thin Fe--Ni alloy sheet for shadow mask consists essentially of Ni of 34 to 38 wt. %, Si of 0.05 wt. % or less, B of 0.0005 wt. % or less, O of 0.002 wt. % or less and N of 0.0015% or less, the balance being Fe and inevitable impurities; said alloy sheet after annealing before press-forming having 0.2% proof stress of 28.5 kgf/mm.sup.2 or less; and a degree of {211} plane on a surface of said alloy sheet being 16% or less. And further modified similar alloy sheets are also provided.Further, a method for producing a thin Fe--Ni alloy sheet for shadow mask comprises the steps of: (a) hot-rolling of a slab into a hot-rolled alloy strip; (b) hot-rolled sheet annealing of the hot-rolled strip at 910 to 990.degree. C.; (c) cold-rolling of the annealed hot-rolled strip into a cold-rolled strip; (d) recrystallization annealing of the cold-rolled strip; (e) finish cold-rolling of the recrystallization annealed strip at a finish cold reduction ratio in response to austenite grain size D(D.mu.m) yieleded by the recrystallization annealing, the finish cold reducration ratio(R) being within a region enclosed by a range of R of 16 to 75 and a range of D of 6.38D-133.9.ltoreq.R.ltoreq.6.38D-51.0 and (f) annealing of the finish cold-rolled strip on conditions of a temperature of 720.degree. to 790.degree. C., a time of 2 to 40 min. and T.gtoreq.-53.8 logt+806, where T(.degree.C.) is the temperature of the annealing. And further modified similar methods are also provided.
摘要:
An alloy sheet for making a shadow mask consists essentially of 34 to 38 wt. % Ni, 0.07 wt. % or less Si, 0.002 wt. % or less B, 0.002 wt. % or less O, less than 0.002 wt. % N and the balance being Fe and inevitable impurities;said alloy sheet after annealing before press-forming having 0.2% proof stress of 28 kgf/mm.sup.2 or less; anda gathering degree of {211} plane being 16% or less.A method for manufacturing an alloy sheet comprises:a finish cold-rolling step of cold-rolling the cold-rolled sheet at a cold-rolling reduction ratio in response to an average austenite grain size D (.mu.m), the reduction ratio of final cold-rolling R (%) satisfying the equations below;16.ltoreq.R.ltoreq.75,6.38D-133.9.ltoreq.R.ltoreq.6.38D-51.0a softening annealing step of annealing said cold rolled sheet in a temperature range of 720.degree. to 790.degree. C. for 2 to 40 min. before press-forming and on conditions satisfying the equation below;T.gtoreq.-53.8 log t+806,where T(.degree. C.) is the temperature and t (min.) is the time of the annealing.
摘要翻译:用于制造荫罩的合金薄板基本上由34至38wt。 %Ni,0.07重量% %以下Si,0.002重量% %以下B,0.002重量% %以下O,小于0.002重量% %N,余量为Fe和不可避免的杂质; 所述合金板在压制成形之后的退火之后具有28kgf / mm2以下的0.2%的弹性极限应力; {211}飞机的集体度为16%以下。 一种合金板的制造方法,其特征在于,包括:根据平均奥氏体晶粒尺寸D(μm)以冷轧压下率冷轧所述冷轧板的最终冷轧工序,最终的 冷轧R(%)满足以下等式; 16 = R = 75,6.38D-133.9 = R = 6.38D-51.0a软化退火步骤,在温度 范围为720°至790℃,持续2至40分钟。 在压制成形之前和满足以下等式的条件下,T> / = - 53.8log t + 806,其中T(℃)为温度,t(min。)为退火时间。
摘要:
An alloy sheet for making a shadow mask consists essentially of 34 to 38 wt. % Ni, 0.07 wt. % or less Si, 0.001 wt. % or less B, 0.003 wt. % or less O, 0.002 wt. % or less N, and the balance being Fe and inevitable impurities.The alloy sheet has an average austenite grain size (Dav) of 10.5 to 15.0 .mu.m, a ratio of a maximum size to the minimum size of austenite grains (Dmax/Dmin) of 1 to 15, a Vickers hardness (Hv) of 165 to 220 and satisfying a relation of10.times.Dav+80.gtoreq.Hv.gtoreq.10.times.Dav+50;and gathering degree of crystal planes on said alloy sheet surface of14% or less for {111} plane,5 to 75% for {100} plane,5 to 40% for {110} plane,20% or less for {311} plane,20% or less for {331} plane,20% or less for {210} plane, and20% or less for {211} plane.
摘要:
A method for manufacturing an alloy sheet comprising the steps of: (a) hot-rolling a slab containing Fe, Ni and Cr into a hot-rolled strip; (b) annealing the hot-rolled strip at a temperature of 810.degree. to 890.degree. C.; (c) cold-rolling the annealed hot-rolled strip at a reduction ratio of 81 to 94% into a cold-rolled sheet; (d) recrystallization annealing of the cold-rolled sheet; (e) finish cold-rolling the cold-rolled sheet subjected to the recrystallization annealing at a reduction ratio of 14 to 29%; (f) stress relief annealing of the cold-rolled sheet subjected to the finish cold-rolling; and (g) annealing, before press-forming. The cold-rolled sheet subjected to the stress relief annealing at a temperature of 740.degree. to 900.degree. C. for 2 to 40 minutes and satisfying the following equation: T.ltoreq.-123 logt+937, where T is a temperature (.degree.C.) and t is a time (minutes) for the annealing.