摘要:
A trench isolation structure which prevents a hump phenomenon and an inverse narrow width effect of transistors by rounding the top edges of a trench and increasing the amount of oxidation at the top edges of a trench, a semiconductor device having the trench isolation structure, and a trench isolation method are provided. In this trench isolation method, a trench is formed in non-active regions of a semiconductor substrate. An inner wall oxide film having a thickness of 10 to 150 Å is formed on the inner wall of the trench. A liner is formed on the surface of the inner wall oxide film. The trench is filled with a dielectric film. Part of the liner is etched so that the top ends of the silicon nitride liner are recessed from the surface of the semiconductor substrate.
摘要:
Trench isolation methods for integrated circuits may reduce irregularities in the formation of an isolation layer through use of a high selectivity chemical-mechanical polishing (CMP) operation. In particular, a substrate surface is etched to form a trench. An insulation layer is then formed on the substrate surface and in the trench. The insulation layer is chemical-mechanical polished using a slurry that includes a CeO2 group abrasive to form an isolation layer in the trench. The CMP selectivity ratio of a slurry that includes a CeO2 group abrasive may be sufficient to allow the substrate surface to be used as a CMP stop. As a result, a more consistent level of polishing may be maintained over the substrate surface, which may result in a more uniform thickness in the isolation layer.
摘要:
A trench isolation structure which prevents a hump phenomenon and an inverse narrow width effect of transistors by rounding the top edges of a trench and increasing the amount of oxidation at the top edges of a trench, a semiconductor device having the trench isolation structure, and a trench isolation method are provided. In this trench isolation method, a trench is formed in non-active regions of a semiconductor substrate. An inner wall oxide film having a thickness of 10 to 150 Å is formed on the inner wall of the trench. A liner is formed on the surface of the inner wall oxide film. The trench is filled with a dielectric film. Part of the liner is etched so that the top ends of the silicon nitride liner are recessed from the surface of the semiconductor substrate.
摘要:
A method of forming an isolation film forms a spacer for connecting the edge of an active region to the isolation film. The spacer is on the upper sidewall of a trench and smoothes the transition or step between the level of the isolation film and the level of the active region. Accordingly, a gate oxide film of a uniform thickness can be formed on the entire active region in a subsequent process, thus preventing degradation of the characteristics of the gate oxide film. The spacer can be formed using a sidewall spacer on the hard mask used for forming the trench. The sidewall spacer protects part of the isolation formed in the trench, and etching after removal of the sidewall spacer can round the protected portion to create the spacer. Furthermore, to dispel stresses and defects in the isolation film, annealing for densification of the isolation film can be performed at a high temperature such as about 1150° C. because the spacer mitigates the effects of shrinking or sagging of the isolation film.
摘要:
A semiconductor device having a Y-shaped isolation layer and a method for manufacturing the same are provided. The semiconductor device includes a Y-shaped isolation layer, which comprises side walls characterized by first and second slopes on the sides of the isolation layer. The method for manufacturing the isolation layer includes the step of forming a trench in a semiconductor substrate using a photoresist pattern as an etching mask. Next, a thermal oxide film is formed on the surface of the semiconductor substrate, and then a thin nitride liner is formed on the thermal oxide film. The nitride liner prevents oxidation of the side wall of the trench and also acts as a planarization stop layer. Thereafter, a gap-filling isolation layer is formed to fill the trench such that the nitride liner is separated or thinner at the upper corners of the trench. Next, the gap-filling isolation layer is planarized using the nitride liner as a planarization stop layer. The nitride liner used as the planarization stop layer is removed. According to the present invention, formation of a divot at the boundary between an isolation region and an active region can be prevented.
摘要:
A method of fabricating a semiconductor device using a trench isolation method including a hydrogen annealing step, wherein a photoresist pattern is formed on a semiconductor substrate, a pad insulating layer may be formed before forming the photoresist pattern, the semiconductor substrate is etched using the photoresist pattern as an etching mask to form a trench, and an isolation layer is formed in the trench. To remove damages created in an active region defined by the isolation layer, the semiconductor substrate having the isolation layer is annealed in a hydrogen atmosphere.
摘要:
A method of fabricating a semiconductor device using a trench isolation method including a hydrogen annealing step, wherein a photoresist pattern is formed on a semiconductor substrate, a pad insulating layer may be formed before forming the photoresist pattern, the semiconductor substrate is etched using the photoresist pattern as an etching mask to form a trench, and an isolation layer is formed in the trench. To remove damages created in an active region defined by the isolation layer, the semiconductor substrate having the isolation layer is annealed in a hydrogen atmosphere.
摘要:
An isolation method for a semiconductor device where an insulating mask layer is formed on desired regions of a semiconductor substrate. A trench is formed to a desired depth in the semiconductor substrate using the insulating mask layer as a mask. An oxide layer is formed on the insulating mask layer and on the sidewall of the trench. A trench liner layer is formed on the oxide layer. An insulating filler layer is formed in the trench in the semiconductor substrate, on which the trench liner layer is formed, so as to fill the trench. The insulating mask layer is removed. According to the isolation method for a semiconductor device, it is possible to reduce dents from occurring along the edge of the trench, reduce a bird's beak type oxide layer from occurring at an interface between the insulating mask layers, decrease the leakage current, or improve the electrical characteristics, such as threshold voltage.
摘要:
A method for forming a conductive contact of a semiconductor device is provided. According to one aspect of the present invention, a dummy dielectric layer pattern having a dummy opening and an interdielectric layer pattern having a lower etch-rate than that of the dummy dielectric layer, for filling the dummy opening are formed on a semiconductor substrate. The dummy dielectric layer pattern using the interdielectric layer pattern as an etching mask is selectively removed, and a contact opening for exposing the semiconductor substrate of a portion in which the dummy dielectric layer pattern is located.
摘要:
Provided is a Pt—Ru based quaternary metal anode catalyst for a direct methanol fuel cell (DMFC). The Pt—Ru based quaternary metal anode catalyst has high activity to methanol oxidation and strong resistance to catalyst poisoning due to carbon monoxide (CO), which is a byproduct of the methanol oxidation. Therefore, the Pt—Ru based quaternary metal anode catalyst can give high power density and can replace existing commercial catalysts.