摘要:
Provided are an interconnection of a semiconductor device which includes a capping layer and a method for forming the interconnection. The interconnection of the semiconductor device is a copper damascene interconnection where the capping layer is formed as a dual layer of a silicon nitride layer and silicon carbide layer on a copper layer processed by chemical mechanical polishing (CMP). Therefore, it is possible to maintain a high etching selectivity and a low dielectric constant of the silicon carbide layer while providing superior leakage suppression.
摘要:
Provided are an interconnection of a semiconductor device which includes a capping layer and a method for forming the interconnection. The interconnection of the semiconductor device is a copper damascene interconnection where the capping layer is formed as a dual layer of a silicon nitride layer and silicon carbide layer on a copper layer processed by chemical mechanical polishing (CMP). Therefore, it is possible to maintain a high etching selectivity and a low dielectric constant of the silicon carbide layer while providing superior leakage suppression.
摘要:
Provided are an interconnection of a semiconductor device which includes a capping layer and a method for forming the interconnection. The interconnection of the semiconductor device is a copper damascene interconnection where the capping layer is formed as a dual layer of a silicon nitride layer and silicon carbide layer on a copper layer processed by chemical mechanical polishing (CMP). Therefore, it is possible to maintain a high etching selectivity and a low dielectric constant of the silicon carbide layer while providing superior leakage suppression.
摘要:
Field effect transistors (FETs) include an integrated circuit substrate having a surface, and a gate on the surface. A pair of recessed regions in the substrate are located beneath the surface. Respective ones of the recessed regions are located on respective opposite sides of the gate. Each of the recessed regions define a sidewall and a floor. An elevated source/drain structure on each of the recessed regions is at least as thick adjacent to the gate as remote from the gate. A gate spacer may be included between the gate and the elevated source/drain region. The gate spacer can comprise an insulating film. Preferably, the source/drain structure extends to the sidewall of the recessed region. The elevated source/drain structure is preferably free of a facet adjacent the gate. The present invention also relates to methods for fabricating a field effect transistors (FET) having an elevated source/drain structure. These methods may comprise the steps of: providing a integrated circuit substrate having a surface and a gate on the integrated circuit substrate; subsequently removing portions of the integrated circuit substrate to form a pair of recessed regions below the surface of the integrated circuit substrate, the recessed region being defined by a floor and sidewall in the integrated circuit substrate; and epitaxially growing a layer on the floor and sidewall of each recessed region.
摘要:
A method of fabricating a semiconductor device using a trench isolation method including a hydrogen annealing step, wherein a photoresist pattern is formed on a semiconductor substrate, a pad insulating layer may be formed before forming the photoresist pattern, the semiconductor substrate is etched using the photoresist pattern as an etching mask to form a trench, and an isolation layer is formed in the trench. To remove damages created in an active region defined by the isolation layer, the semiconductor substrate having the isolation layer is annealed in a hydrogen atmosphere.
摘要:
Provided are an interconnection of a semiconductor device which includes a capping layer and a method for forming the interconnection. The interconnection of the semiconductor device is a copper damascene interconnection where the capping layer is formed as a dual layer of a silicon nitride layer and silicon carbide layer on a copper layer processed by chemical mechanical polishing (CMP). Therefore, it is possible to maintain a high etching selectivity and a low dielectric constant of the silicon carbide layer while providing superior leakage suppression.
摘要:
Provided are an interconnection of a semiconductor device which includes a capping layer and a method for forming the interconnection. The interconnection of the semiconductor device is a copper damascene interconnection where the capping layer is formed as a dual layer of a silicon nitride layer and silicon carbide layer on a copper layer processed by chemical mechanical polishing (CMP). Therefore, it is possible to maintain a high etching selectivity and a low dielectric constant of the silicon carbide layer while providing superior leakage suppression.
摘要:
In the present invention, an apparatus of testing a leakage protection reliability of an integrated circuit interconnection. The apparatus has at least one comb-like pattern, a serpentine-like pattern and means of applying a bias to the patterns and forms a maximum field region at an interconnection formed around a via, i.e., at the end of a tooth portion composing the comb-like pattern. In one structure of the present invention, the comb-like pattern is formed at one level, and the serpentine-like pattern has a plurality of unit parts corresponding to the tooth portions, respectively, and connection parts connecting the neighboring two unit parts. Each of the unit parts is formed at the same level with the comb-like pattern and spaced apart from the tooth portion by a minimum design length according to a design rule. The unit part has vias formed through an interlayer dielectric layer at the both ends of a tooth parallel part, two tooth parallel parts connected with the vias, respectively, and a length parallel part electrically connecting two tooth parallel parts.
摘要:
A method of fabricating a semiconductor device using a trench isolation method including a hydrogen annealing step, wherein a photoresist pattern is formed on a semiconductor substrate, a pad insulating layer may be formed before forming the photoresist pattern, the semiconductor substrate is etched using the photoresist pattern as an etching mask to form a trench, and an isolation layer is formed in the trench. To remove damages created in an active region defined by the isolation layer, the semiconductor substrate having the isolation layer is annealed in a hydrogen atmosphere.
摘要:
Field effect transistors (FETs) include an integrated circuit substrate having a surface, and a gate on the surface. A pair of recessed regions in the substrate are located beneath the surface. Respective ones of the recessed regions are located on respective opposite sides of the gate. Each of the recessed regions define a sidewall and a floor. An elevated source/drain structure on each of the recessed regions is at least as thick adjacent to the gate as remote from the gate. A gate spacer may be included between the gate and the elevated source/drain region. The gate spacer can comprise an insulating film. Preferably, the source/drain structure extends to the sidewall of the recessed region. The elevated source/drain structure is preferably free of a facet adjacent the gate. The present invention also relates to methods for fabricating a field effect transistors (FET) having an elevated source/drain structure. These methods may comprise the steps of: providing a integrated circuit substrate having surface and a gate on the integrated circuit substrate; subsequently removing portions of the integrated circuit substrate to form a pair of recessed regions below the surface of the integrated circuit substrate, the recessed region being defined by a floor and sidewall in the integrated circuit substrate; and epitaxially growing a layer on the floor and sidewall of each recessed region.