Abstract:
A low noise amplifier (LNA) includes a pair of n-type transistors, each configured to provide a first transconductance; a pair of p-type transistors, each configured to provide a second transconductance; a first pair of coupling capacitors, cross-coupled between the pair of n-type transistors, and configured to provide a first boosting coefficient to the first transconductance; and a second pair of coupling capacitors, cross-coupled between the pair of p-type transistors, and configured to provide a second boosting coefficient to the second transconductance, wherein the LNA is configured to use a boosted effective transconductance based on the first and second boosting coefficients, and the first and second transconductances to amplify an input signal.
Abstract:
A low noise amplifier (LNA) includes a pair of n-type transistors, each configured to provide a first transconductance; a pair of p-type transistors, each configured to provide a second transconductance; a first pair of coupling capacitors, cross-coupled between the pair of n-type transistors, and configured to provide a first boosting coefficient to the first transconductance; and a second pair of coupling capacitors, cross-coupled between the pair of p-type transistors, and configured to provide a second boosting coefficient to the second transconductance, wherein the LNA is configured to use a boosted effective transconductance based on the first and second boosting coefficients, and the first and second transconductances to amplify an input signal.
Abstract:
A device is disclosed that includes a first gain stage and a first amplifier. The first gain stage is configured to generate a first signal according to a first input signal, and to multiply the first signal and the first input signal, to generate a second signal at a first output terminal, in which the first signal is associated with the even order signal components of the first input signal. The first amplifier is configured to amplify the first input signal to generate a third signal at the first output terminal, in order to output a first output signal with the first gain stage, in which the first output signal is the sum of the second signal and the third signal.
Abstract:
A low noise amplifier (LNA) includes a pair of n-type transistors, each configured to provide a first transconductance; a pair of p-type transistors, each configured to provide a second transconductance; a first pair of coupling capacitors, cross-coupled between the pair of n-type transistors, and configured to provide a first boosting coefficient to the first transconductance; and a second pair of coupling capacitors, cross-coupled between the pair of p-type transistors, and configured to provide a second boosting coefficient to the second transconductance, wherein the LNA is configured to use a boosted effective transconductance based on the first and second boosting coefficients, and the first and second transconductances to amplify an input signal.
Abstract:
A wireless transmitter includes a an amplifier; and a switchable transformer, coupled to the amplifier, wherein the amplifier is configured to be coupled to the switchable transformer in first and second configurations, wherein the first configuration causes the amplifier to provide a first output impedance to the switchable transformer, and wherein the second configuration causes the amplifier to provide a second output impedance to the switchable transformer, the first and second output impedances being different from each other.
Abstract:
A wireless transmitter includes a an amplifier; and a switchable transformer, coupled to the amplifier, wherein the amplifier is configured to be coupled to the switchable transformer in first and second configurations, wherein the first configuration causes the amplifier to provide a first output impedance to the switchable transformer, and wherein the second configuration causes the amplifier to provide a second output impedance to the switchable transformer, the first and second output impedances being different from each other.
Abstract:
A voltage-to-current converter is disclosed. The voltage to current converter includes a converter circuit having an input node, an amplified signal node and an output. The input node is configured to receive a sinusoidal voltage signal and the output is configured to provide a half-wave current signal. A transistor having a gate, a source, and a drain is coupled to the input node. The input node is coupled to one of the source or the drain. The amplified signal node is coupled to the gate. A process tracking stabilizer is coupled to the transistor at the source or the drain not coupled to the input node. The process tracking stabilizer is configured to generate a control voltage for the transistor. The control voltage is configured to maintain a predetermined non-zero voltage at the input node of the converter circuit during a negative cycle of the sinusoidal voltage signal.