Abstract:
The present disclosure provides an embodiment of a reflective mask that includes a substrate; a reflective multilayer disposed on the substrate; an anti-oxidation barrier layer disposed on the reflective multilayer and the anti-oxidation barrier layer is in amorphous structure with an average interatomic distance less than an oxygen diameter; and an absorber layer disposed on the anti-oxidation barrier layer and patterned according to an integrated circuit layout.
Abstract:
The present disclosure provides an embodiment of a reflective mask that includes a substrate; a reflective multilayer disposed on the substrate; an anti-oxidation barrier layer disposed on the reflective multilayer and the anti-oxidation barrier layer is in amorphous structure with an average interatomic distance less than an oxygen diameter; and an absorber layer disposed on the anti-oxidation barrier layer and patterned according to an integrated circuit layout.
Abstract:
Any defects in the reflective multilayer coating or absorber layer of an EUV mask are problematic in transferring a pattern of the EUV mask to a wafer since they produce errors in integrated circuit patterns on the wafer. In this regard, a method of manufacturing an EUV mask is provided according to various embodiments of the present disclosure. To repair the defect, a columnar reflector, which acts as a Bragg reflector, is deposited according to various embodiments so as to locally compensate and repair the defect. According to the embodiments of the present disclosure, the reflective loss due to the defect can be compensated and recover the phase different due to the defect from, so as to form a desirable wafer printed image.
Abstract:
The present disclosure provides an embodiment of a reflective mask that includes a substrate; a reflective multilayer disposed on the substrate; an anti-oxidation barrier layer disposed on the reflective multilayer and the anti-oxidation barrier layer is in amorphous structure with an average interatomic distance less than an oxygen diameter; and an absorber layer disposed on the anti-oxidation barrier layer and patterned according to an integrated circuit layout.
Abstract:
Any defects in the reflective multilayer coating or absorber layer of an EUV mask are problematic in transferring a pattern of the EUV mask to a wafer since they produce errors in integrated circuit patterns on the wafer. In this regard, a method of manufacturing an EUV mask is provided according to various embodiments of the present disclosure. To repair the defect, a columnar reflector, which acts as a Bragg reflector, is deposited according to various embodiments so as to locally compensate and repair the defect. According to the embodiments of the present disclosure, the reflective loss due to the defect can be compensated and recover the phase different due to the defect from, so as to form a desirable wafer printed image.
Abstract:
Any defects in the reflective multilayer coating or absorber layer of an EUV mask are problematic in transferring a pattern of the EUV mask to a wafer since they produce errors in integrated circuit patterns on the wafer. In this regard, a method of manufacturing an EUV mask is provided according to various embodiments of the present disclosure. To repair the defect, a columnar reflector, which acts as a Bragg reflector, is deposited according to various embodiments so as to locally compensate and repair the defect. According to the embodiments of the present disclosure, the reflective loss due to the defect can be compensated and recover the phase different due to the defect from, so as to form a desirable wafer printed image.