Abstract:
As will be appreciated in more detail herein, the present disclosure provides for FinFET techniques whereby a FinFET channel region has a particular orientation with respect to the crystalline lattice of the semiconductor device to provide enhanced mobility, compared to conventional FinFETs. In particular, the present disclosure provides FinFETs with a channel region whose lattice includes silicon atoms arranged on (551) lattice plane. In this configuration, the sidewalls of the channel region are particularly smooth at the atomic level, which tends to promote higher carrier mobility and higher device performance than previously achievable.
Abstract:
As will be appreciated in more detail herein, the present disclosure provides for FinFET techniques whereby a FinFET channel region has a particular orientation with respect to the crystalline lattice of the semiconductor device to provide enhanced mobility, compared to conventional FinFETs. In particular, the present disclosure provides FinFETs with a channel region whose lattice includes silicon atoms arranged on (551) lattice plane. In this configuration, the sidewalls of the channel region are particularly smooth at the atomic level, which tends to promote higher carrier mobility and higher device performance than previously achievable.
Abstract:
A semiconductor wafer having a plurality of chip die areas arranged on a wafer in an array, each chip die area including a seal ring area with one or more first sets of polygonal structures. The wafer further comprises scribe line areas between the chip die areas, the scribe line areas including one or more second sets of polygonal structures. The presence of proximate polygonal structures between the scribe line and seal ring areas balance stresses between the chip die areas during wafer dicing operation.