Abstract:
A semiconductor package includes a first semiconductor device, a second semiconductor device vertically positioned above the first semiconductor device, and a ground shielded transmission path. The ground shielded transmission path couples the first semiconductor device to the second semiconductor device. The ground shielded transmission path includes a first signal path extending longitudinally between a first end and a second end. The first signal path includes a conductive material. A first insulating layer is disposed over the signal path longitudinally between the first end and the second end. The first insulating layer includes an electrically insulating material. A ground shielding layer is disposed over the insulating material longitudinally between the first end and the second end of the signal path. The ground shielding layer includes a conductive material coupled to ground. The ground shielding layer drives radiation signals received therein to ground to prevent induced noise in the first signal path.
Abstract:
A semiconductor package includes a first semiconductor device, a second semiconductor device vertically positioned above the first semiconductor device, and a ground shielded transmission path. The ground shielded transmission path couples the first semiconductor device to the second semiconductor device. The ground shielded transmission path includes a first signal path extending longitudinally between a first end and a second end. The first signal path includes a conductive material. A first insulating layer is disposed over the signal path longitudinally between the first end and the second end. The first insulating layer includes an electrically insulating material. A ground shielding layer is disposed over the insulating material longitudinally between the first end and the second end of the signal path. The ground shielding layer includes a conductive material coupled to ground. The ground shielding layer drives radiation signals received therein to ground to prevent induced noise in the first signal path.
Abstract:
A semiconductor package includes a first semiconductor device, a second semiconductor device vertically positioned above the first semiconductor device, and a ground shielded transmission path. The ground shielded transmission path couples the first semiconductor device to the second semiconductor device. The ground shielded transmission path includes a first signal path extending longitudinally between a first end and a second end. The first signal path includes a conductive material. A first insulating layer is disposed over the signal path longitudinally between the first end and the second end. The first insulating layer includes an electrically insulating material. A ground shielding layer is disposed over the insulating material longitudinally between the first end and the second end of the signal path. The ground shielding layer includes a conductive material coupled to ground. The ground shielding layer drives radiation signals received therein to ground to prevent induced noise in the first signal path.
Abstract:
A computer implemented method comprises accessing a 3D-IC model stored in a tangible, non-transitory machine readable medium, inputting a power profile in a computer processor, generating a transient temperature profile based on the 3D-IC model, identifying a potential thermal violation at a corresponding operating time interval and a corresponding location of a plurality of points of the 3D-IC design, and outputting data representing the potential thermal violation. The 3D-IC model represents a 3D-IC design comprising a plurality of elements in a stack configuration. The power profile is applied to the plurality of elements of the 3D-IC design as a function of an operating time. The transient temperature profile includes temperatures at a plurality of points of the 3D-IC design as a function of an operating time.
Abstract:
A device, a circuit and a method are disclosed herein. The device includes a data receiving circuit and an oscillating signal generator. The data receiving circuit is configured to output a first output signal, a second output signal, and a phase error signal according to an oscillating signal and a modulated signal, in which the phase error signal indicates a phase difference between the oscillating signal and the modulated signal. The oscillating signal generator is configured to delay a phase of a first reference signal according to the phase error signal, to generate the oscillating signal.
Abstract:
A device, a circuit and a method are disclosed herein. The device includes a data receiving circuit and an oscillating signal generator. The data receiving circuit is configured to output a first output signal, a second output signal, and a phase error signal according to an oscillating signal and a modulated signal, in which the phase error signal indicates a phase difference between the oscillating signal and the modulated signal. The oscillating signal generator is configured to delay a phase of a first reference signal according to the phase error signal, to generate the oscillating signal.