摘要:
A method of producing a multilayer ceramic electronic device, having a firing step for firing a pre-firing element body wherein a plurality of dielectric layers and internal electrode layers containing a base metal are alternately arranged, characterized in that the firing step has a temperature raising step for raising a temperature to a firing temperature, and hydrogen is continued to be introduced from a point in time of the temperature raising step. According to the method, it is possible to provide a method of producing a multilayer ceramic electronic device, such as a multilayer ceramic capacitor, wherein shape anisotropy and other structural defaults are hard to occur and electric characteristics are improved while suppressing deterioration thereof even if dielectric layers becomes thinner and stacked more.
摘要:
A method of producing a multilayer ceramic electronic device, having a firing step for firing a pre-firing element body wherein a plurality of dielectric layers and internal electrode layers containing a base metal are alternately arranged, characterized in that the firing step has a temperature raising step for raising a temperature to a firing temperature, and hydrogen is continued to be introduced from a point in time of the temperature raising step. According to the method, it is possible to provide a method of producing a multilayer ceramic electronic device, such as a multilayer ceramic capacitor, wherein shape anisotropy and other structural defaults are hard to occur and electric characteristics are improved while suppressing deterioration thereof even if dielectric layers becomes thinner and stacked more.
摘要:
A method of producing a multilayer ceramic electronic device, having a firing step for firing a pre-firing element body wherein a plurality of dielectric layers and internal electrode layers containing a base metal are alternately arranged, characterized in that the firing step has a temperature raising step for raising a temperature to a firing temperature, and hydrogen is continued to be introduced from a point in time of the temperature raising step. According to the method, it is possible to provide a method of producing a multilayer ceramic electronic device, such as a multilayer ceramic capacitor, wherein shape anisotropy and other structural defaults are hard to occur and electric characteristics are improved while suppressing deterioration thereof even if dielectric layers becomes thinner and stacked more.
摘要:
An image forming apparatus includes a rotatable image bearing member and a contact-charging member which contacts a surface of the image bearing member. The contact-charging member can charge the image bearing member by applying a predetermined voltage to the contact-charging member so that a potential of the contact-charging member is changed to a required potential for transferring a residual toner that is stuck on a surface of the contact-charging member facing the image bearing member onto the image bearing member while the image bearing member stops rotating. A method for removing residual toner sticking onto a contact-charging member that contacts a surface of the image bearing member changes a potential of the contact charging member to a required cleaning potential for transferring the residual toner sticking to a surface of the contact-charging member facing the image bearing member onto the contact-charging member while the image bearing member stops rotating. The residual toner is then transferred from the surface of the contact-charging member facing the image bearing member onto the image bearing member, and the residual toner sticking to the surface of the contact-charging member facing the image bearing member is then removed.
摘要:
An image forming apparatus including a latent image carrier, a charger to evenly charge a surface of the latent image carrier, a writing device to irradiate a charged surface of the latent image carrier to form an electrostatic latent image, a writing device control unit to control the writing device, a developing device to develop the electrostatic latent image to form a toner image, a transfer device to transfer the toner image onto a transferred member, and a pre-transfer irradiating device to irradiate the charged surface of the latent image carrier during a period after development and before transfer. The writing device control unit controls the writing device based on a target image signal A and an image signal B output a single rotation of the latent image carrier after output of the target image signal A in a sub-scanning direction.
摘要:
An image forming apparatus including a latent image carrier, a charger to evenly charge a surface of the latent image carrier, a writing device to irradiate a charged surface of the latent image carrier to form an electrostatic latent image, a writing device control unit to control the writing device, a developing device to develop the electrostatic latent image to form a toner image, a transfer device to transfer the toner image onto a transferred member, and a pre-transfer irradiating device to irradiate the charged surface of the latent image carrier during a period after development and before transfer. The writing device control unit controls the writing device based on a target image signal A and an image signal B output a single rotation of the latent image carrier after output of the target image signal A in a sub-scanning direction.
摘要:
A health status management system includes circuitry to measure a pulse wave of a user to obtain objective evaluation data for objective evaluation in relation to a mental health status, obtain one or more answers of the user to one or more questions related to the mental health status as subjective evaluation data for subjective evaluation in relation to the mental health status, control a period of measuring the pulse wave and a period of performing the subjective evaluation to overlap with each other, control a start time of the period of measuring the pulse wave to be earlier than a start time of the period of performing the subjective evaluation, transmit, to additional circuitry, the objective evaluation data and the subjective evaluation data, and display, on a screen, information on the objective evaluation and information on the subjective evaluation.
摘要:
The color image forming method of the kind sequentially forming toner images of different colors on an image carrier with developers of corresponding colors stored in a plurality of developing devices, sequentially transferring the toner images to a single paper or similar recording medium one above the other, and returning the toner left on the image carrier after the image transfer to the developing devices color by color, and an image forming apparatus practicable therewith. After the transfer of a toner image of any particular color to the paper wrapped around a transfer drum, a cleaning roller assigned to the above color each collects the toner remaining on the drum and again deposits it on the drum. The drum conveys the redeposited toner to one of the developing devices storing a developer of the same color as the toner.
摘要:
In an optical scanning device, when pixel density is taken to be n, number of the light beams is taken to be b, and number of the deflection surfaces of a deflecting unit is taken to be p, a spatial frequency S denoted by S=1/(1/(25.4/n×b×p) is within a range of a spatial frequency characteristic for a visual perception system of a high relative luminous efficiency. When spacing between ends in a sub-scanning direction of a scanning line formed by one scan by the deflection unit is taken to be L1, and spacing between all progressive scanning lines at the surface to be scanned is taken to be L2, then L1>(k−1)×L2 is satisfied, where k is a total number of light emitting points of a light source.
摘要:
In an optical scanning device, when pixel density is taken to be n, number of the light beams is taken to be b, and number of the deflection surfaces of a deflecting unit is taken to be p, a spatial frequency S denoted by S=1/(1/(25.4/n×b×p) is within a range of a spatial frequency characteristic for a visual perception system of a high relative luminous efficiency. When spacing between ends in a sub-scanning direction of a scanning line formed by one scan by the deflection unit is taken to be L1, and spacing between all progressive scanning lines at the surface to be scanned is taken to be L2, then L1>(k−1)×L2 is satisfied, where k is a total number of light emitting points of a light source.