摘要:
The invention provides a flexible optical waveguide in which an optical waveguide film is directly formed on a substrate without using an adhesive and which is excellent in flexibility of the optical waveguide film, including the substrate, and excellent in adhesiveness between the substrate and the optical waveguide film, as well as a process for producing the flexible optical waveguide in a simple and easy manner. The flexible optical waveguide includes a lower cladding layer, a core layer, and an upper cladding layer successively formed on a substrate and a surface of the substrate, on which surface the lower cladding layer is to be formed, has an arithmetic average roughness (Ra) of 0.03 μm or higher. The flexible optical waveguide can be produced by subjecting a surface of the substrate, on which surface the lower cladding layer is to be formed, to physical treatment with a whetstone or chemical treatment with a corona discharge and then successively forming the lower cladding layer, the core layer, and the upper cladding layer on the surface of the substrate.
摘要:
An optical waveguide substrate with an optical fiber fixation groove, including an optical waveguide which contains a lower cladding layer on a base substrate, wherein the lower cladding layer has an optical fiber fixation groove and a core groove, and a weir is provided between the optical fiber fixation groove and the core groove. The optical waveguide substrate with an optical fiber fixation groove is produced by forming a lower cladding layer on a base substrate using a male stamp produced from a female stamp and then successively forming a core layer and an upper cladding layer thereon.
摘要:
An optical waveguide substrate with an optical fiber fixation groove, including an optical waveguide which contains a lower cladding layer on a base substrate, wherein the lower cladding layer has an optical fiber fixation groove and a core groove, and a weir is provided between the optical fiber fixation groove and the core groove. The optical waveguide substrate with an optical fiber fixation groove is produced by forming a lower cladding layer on a base substrate using a male stamp produced from a female stamp and then successively forming a core layer and an upper cladding layer thereon. The stamp for use in such a production process includes concave portions or convex portions, corresponding to the optical fiber fixation groove and the core groove, as well as a convex portion or a concave portion corresponding to the weir. An opto-electronic hybrid integrated module includes the optical waveguide substrate with an optical fiber fixation groove.
摘要:
The invention provides a flexible optical waveguide in which an optical waveguide film is directly formed on a substrate without using an adhesive and which is excellent in flexibility of the optical waveguide film, including the substrate, and excellent in adhesiveness between the substrate and the optical waveguide film, as well as a process for producing the flexible optical waveguide in a simple and easy manner. The flexible optical waveguide includes a lower cladding layer, a core layer, and an upper cladding layer successively formed on a substrate and a surface of the substrate, on which surface the lower cladding layer is to be formed, has an arithmetic average roughness (Ra) of 0.03 μm or higher. The flexible optical waveguide can be produced by subjecting a surface of the substrate, on which surface the lower cladding layer is to be formed, to physical treatment with a whetstone or chemical treatment with a corona discharge and then successively forming the lower cladding layer, the core layer, and the upper cladding layer on the surface of the substrate.
摘要:
An optical fiber holder 7 which directs an angulated groove 6 in which an optical fiber 4 is disposed to a substrate 2 and overlays the angulated groove 6 on the substrate 2 may be formed first. Next, a guide 8 which guides the optical fiber holder 7 to the position where the optical fiber 4 and the optical device 3 are to be optically coupled to each other is formed on the substrate 2. Next, a 45-degree mirror is formed by dicing the optical fiber holder 7 and the optical fiber 4 together in a state in which the optical fiber 4 is disposed in the angulated groove 6. Finally, the optical fiber holder 7 is overlaid on the substrate 2, and the optical fiber holder 7 is guided by the guide 8.
摘要:
An optical circuit board which facilitates a mounting process and provides advantageous aspects of electric interconnection and optical interconnection. An optical circuit board comprises a flexible circuit board composed of a film having a flexibility; one or more electric interconnections provided at the flexible circuit board; one or more optical interconnections provided at the flexible circuit board; an optical transmitter for converting an electric signal supplied at a designated electric interconnection of the electric interconnections provided at the flexible circuit board into an optical signal; and an optical receiver for reconverting the optical signal emitted by the designated electric interconnection provided at the flexible circuit board into an electric signal and for outputting the reconverted electric signal to another electric interconnection.
摘要:
A flexible optical interconnection structure has a plurality of layers including an optical waveguide made of a core and a clad. The core is disposed to include a neutral surface that is not affected by expansion or contraction by bending. Alternatively, when the neutral surface is position outside the core, the core is disposed to satisfy Δy≦0.03×R, in which Δy is a distance between the neutral surface and a surface of the core at a side near the neutral surface, and R is a curvature radius of an innermost surface of the flexible optical interconnection structure in the bent state.
摘要:
An optical fiber holder 7 which directs an angulated groove 6 in which an optical fiber 4 is disposed to a substrate 2 and overlays the angulated groove 6 on the substrate 2 may be formed first. Next, a guide 8 which guides the optical fiber holder 7 to the position where the optical fiber 4 and the optical device 3 are to be optically coupled to each other is formed on the substrate 2. Next, a 45-degree mirror is formed by dicing the optical fiber holder 7 and the optical fiber 4 together in a state in which the optical fiber 4 is disposed in the angulated groove 6. Finally, the optical fiber holder 7 is overlaid on the substrate 2, and the optical fiber holder 7 is guided by the guide 8.
摘要:
A flexible optical interconnection structure has a plurality of layers including an optical waveguide made of a core and a clad. The core is disposed to include a neutral surface that is not affected by expansion or contraction by bending. Alternatively, when the neutral surface is position outside the core, the core is disposed to satisfy Δy≦0.03×R, in which Δy is a distance between the neutral surface and a surface of the core at a side near the neutral surface, and R is a curvature radius of an innermost surface of the flexible optical interconnection structure in the bent state.
摘要:
An optical circuit board which facilitates a mounting process and provides advantageous aspects of electric interconnection and optical interconnection. An optical circuit board comprises a flexible circuit board composed of a film having a flexibility; one or more electric interconnections provided at the flexible circuit board; one or more optical interconnections provided at the flexible circuit board; an optical transmitter for converting an electric signal supplied at a designated electric interconnection of the electric interconnections provided at the flexible circuit board into an optical signal; and an optical receiver for reconverting the optical signal emitted by the designated electric interconnection provided at the flexible circuit board into an electric signal and for outputting the reconverted electric signal to another electric interconnection.