摘要:
An optical regeneration system for regenerating a degenerated signal light, comprising a regeneration device having at least one of a soliton converter, a pulse roller, a Kerr-shutter and a soliton purifier. The solilton converter uses an anomalous-dispersion fiber (ADF) having a fiber length up to three times the soliton frequency, and the pulse roller is provided with a pulse roller fiber having high non-linear characteristics. The Kerr-shutter comprises an optical LO (local oscillation) generator for generating an optical LO on an OPLL (optical phase locked loop), a phase comparator for detecting the phase difference between an externally-input signal light and an optical LO, and a control unit for regulating the repeated frequency of an optical LO based on the phase difference. The soliton purifier has a soliton fiber disposed between two optical fibers.
摘要:
The present invention provides a method for designing an optical pulse shaper including a first optical propagation line unit having a nonlinear medium and a dispersion medium concatenated, including: specifying design specifications of the first optical propagation line unit; and based on the design specification, calculating a quasi-periodic stationary pulse of which a waveform of an input optical pulse to the first optical propagation line unit is similar to a waveform of an output pulse from the first optical propagation line unit.
摘要:
An optically sampling device optically samples an optical analog signal using a sampled signal having a predetermined sampling frequency, and outputs control light having a pulse train of an optically sampled optical analog signal. A signal generating device generates a pulse train of signal light which is synchronized with the sampled signal. An optical encoding device optically encodes the pulse train of the signal light according to the control light, by using optical encoders each including nonlinear optical loop mirrors, and outputs pulse trains of optically encoded signal light from said optical encoders, respectively. An optically quantizing device performs optical threshold processing on the pulse trains of optically-encoded signal light to optically quantize them, by using at least one of optical threshold processors each of which is connected to each of said optical encoders and includes a nonlinear optical device, and outputs optically quantized pulse trains as optical digital signals.
摘要:
The present invention provides a method for designing an optical pulse shaper including a first optical propagation line unit having a nonlinear medium and a dispersion medium concatenated, including: specifying design specifications of the first optical propagation line unit; and based on the design specification, calculating a quasi-periodic stationary pulse of which a waveform of an input optical pulse to the first optical propagation line unit is similar to a waveform of an output pulse from the first optical propagation line unit.
摘要:
An optical regeneration system for regenerating a degenerated signal light, comprising a regeneration device having at least one of a soliton converter, a pulse roller, a Kerr-shutter and a soliton purifier. The solilton converter uses an anomalaous-dispersion fiber (ADF) having a fiber length up to three times the soliton frequency, and the pulse roller is provided with a pulse roller fiber having high non-linear characteristics. The Kerr-shutter comprises an optical LO (local oscillation) generator for generating an optical LO on an OPLL (optical phase locked loop), a phase comparator for detecting the phase difference between an externally-input signal light and an optical LO, and a control unit for regulating the repeated frequency of an optical LO based on the phase difference. The soliton purifier has a soliton fiber disposed between two optical fibers.
摘要:
An optical regeneration system for regenerating a degenerated signal light, comprising a regeneration device having at least one of a soliton converter, a pulse roller, a Kerr-shutter and a soliton purifier. The solilton converter uses an anomalaous-dispersion fiber (ADF) having a fiber length up to three times the soliton frequency, and the pulse roller is provided with a pulse roller fiber having high non-linear characteristics. The Kerr-shutter comprises an optical LO (local oscillation) generator for generating an optical LO on an OPLL (optical phase locked loop), a phase comparator for detecting the phase difference between an externally-input signal light and an optical LO, and a control unit for regulating the repeated frequency of an optical LO based on the phase difference. The soliton purifier has a soliton fiber disposed between two optical fibers.
摘要:
An optically sampling device optically samples an optical analog signal using a sampled signal having a predetermined sampling frequency, and outputs control light having a pulse train of an optically sampled optical analog signal. A signal generating device generates a pulse train of signal light which is synchronized with the sampled signal. An optical encoding device optically encodes the pulse train of the signal light according to the control light, by using optical encoders each including nonlinear optical loop mirrors, and outputs pulse trains of optically encoded signal light from said optical encoders, respectively. An optically quantizing device performs optical threshold processing on the pulse trains of optically-encoded signal light to optically quantize them, by using at least one of optical threshold processors each of which is connected to each of said optical encoders and includes a nonlinear optical device, and outputs optically quantized pulse trains as optical digital signals.
摘要:
A Raman amplifier according to the present invention comprises a plurality of pumping means using semiconductor lasers of Fabry-Perot, DFB, or DBR type or MOPAs, and pumping lights outputted from the pumping means have different central wavelengths, and interval between the adjacent central wavelength is greater than 6 nm and smaller than 35 nm. An optical repeater according to the present invention comprises the above-mentioned Raman amplifier and adapted to compensate loss in an optical fiber transmission line by the Raman amplifier. In a Raman amplification method according to the present invention, the shorter the central wavelength of the pumping light the higher light power of said pumping light. In the Raman amplifier according to the present invention, when a certain pumping wavelength is defined as a first channel, and second to n-th channels are defined to be arranged with an interval of about 1 THz toward a longer wavelength side, the pumping lights having wavelengths corresponding to the first to n-th channels are multiplexed, and an pumping light having a wavelength spaced apart from the n-th channel by 2 THz or more toward the longer wavelength side is combined with the multiplexed light, thereby forming the pumping light source. The pumping lights having wavelengths corresponding to the channels other than (n-1)-th and (n-2)-th channels may be multiplexed, thereby forming the pumping light source. The pumping lights having wavelengths corresponding to the channels other than (n-2)-th and (n-3)-th channels may be multiplexed, thereby forming the pumping light source.
摘要:
The present invention provides the following designing method: in a laser diode module or a depolarized laser diode module which has one laser diode and one polarization maintaining fiber connected to the output side thereof, the length of the polarization maintaining fiber is a value obtained by calculation of equation 37 with use of a longitudinal mode spacing Δλoutput light from the Fabry Perot (FP) laser diode, an oscillating center wavelength λ0 of the laser light, a beat length LBeat 1 of the polarization maintaining fiber and an optical wavelength λBeat used in the measurement of the LBeat 1. (Equation 37) L Pig
摘要:
The present invention provides the following designing method: in a laser diode module or a depolarized laser diode module which has one laser diode and one polarization maintaining fiber connected to the output side thereof, the length of the polarization maintaining fiber is a value obtained by calculation of equation 37 with use of a longitudinal mode spacing Δλoutput light from the Fabry Perot (FP) laser diode, an oscillating center wavelength λ0 of the laser light, a beat length LBeat 1 of the polarization maintaining fiber and an optical wavelength λBeat used in the measurement of the LBeat 1. L Pig