摘要:
A semiconductor laser device comprises a semiconductor layer stack consisting of a first clad layer, an active layer, and a second clad layer which are successively stacked on a semiconductor substrate, and a light absorbing layer and a current blocking layer which are stacked on the second clad layer; the semiconductor assembly including a stripe shaped groove which extends from the surface of the semiconductor layer stack to the surface or interior of the second cladding layer, and another semiconductor layer having a forbidden band width greater than the active layer and the same conductivity type as the second clad layer which is embedded into the groove by chemical vapor deposition method.
摘要:
A semiconductor laser device is provided with an optical confinement region constituted by first, second, third and fourth semiconductor layers provided on the upper part of a predetermined semiconductor substrate in contact with each other successively. The first and fourth semiconductor layers are smaller in refractive index than the second and third semiconductor layers, and the third semiconductor layer is larger in refractive index than the second semiconductor layer. On the other hand, the second and fourth semiconductor layers are larger in forbidden bandwidth than the third semiconductor layer. At least the first and fourth semiconductor layers are opposite in conductivity type to each other. In addition to this, the optical confinement region is formed into a mesa-stripe, and both side walls of this mesa-stripe which are substantially parallel to the traveling direction of a laser beam are embedded with a fifth semiconductor layer. Also, the width of the second semiconductor layer in a section perpendicular to the traveling direction of the laser beam and in the direction parallel to a junction within the optical confinement region is made larger than that of the third semiconductor layer. Accordingly, by virtue of this structure, a large output is ensured by this semiconductor laser device.
摘要:
In a semiconductor laser device of the type which includes at least one laminate of a first dielectric layer and a second dielectric layer on at least one of the two facets of a resonator and in which the refractive index of the first dielectric layer is lower than that of the second dielectric layer, the improvement wherein the second dielectric layer consists of an amorphous material containing silicon and hydrogen at its essential constituent elements.
摘要:
A semiconductor laser having high efficiency of luminescence can be obtained by forming a spatial fluctuation of potential so that the potential differs from position to position inside a plane perpendicular to a current flowing direction and electrons and holes or excitons formed by a combination of them can be localized not only in the current flowing direction but also inside the plane perpendicular to the current flowing direction. More definitely, corrugations or ruggedness having a mean pitch of below 100 nm and a level difference of from 1/10 to 1/2 of the mean thickness of an active layer are formed on the surface of the active layer of the semiconductor laser.
摘要:
A semiconductor laser element is disclosed which includes a film of an amorphous material deposited on at least an optical output facet of the laser element and contains silicon and hydrogen as the indispensable components. The thickness of the amorphous film is preferably selected in the vicinity of (.lambda./4).multidot.m where .lambda. represents wavelength of laser light in the amorphous film and m represents an odd integer. A film of a transparent insulation material can be deposited over the amorphous film thereby to constitute a composite film. With the disclosed structure of the semiconductor laser element, increasement in a threshold current of the laser element can be suppressed to a minimum, while a maximum optical output power can be increased.
摘要:
In certain applications, it is desirable to have a semiconductor laser device having shorter wave lengths of oscillation than are possible with conventional semiconductor lasers. To accomplish this, a semiconductor laser device is formed having a double-hetero structure, which comprises a semiconductor substrate composed of a GaAsP crystal, a first cladding layer formed on the substrate and composed of a GaAlAsP crystal of one conducting type, an active layer formed on the first cladding layer and composed of GaInAsP crystal, and a second cladding layer formed on the active layer and composed of a GaAlAsP crystal of the conducting type reverse to that of the first cladding layer. The cladding layers disposed on both sides of the active layer have a lower refractivity and a larger band gap than the active layer.
摘要:
A semiconductor laser device capable of emitting highly collimated beams, especially of a narrow beam divergence, is disclosed. A striped hetero-junction is formed on a predetermined semiconductor substrate by a first semiconductor layer (refractive index: n.sub.1, band gap: Eg.sub.1, thickness: d), a second semiconductor layer (n.sub.2) and a third semiconductor layer (n.sub.3), and the hetero-junction is sandwiched between portions of a fourth semiconductor layer (n.sub.4, Eg.sub.4) into a buried structure. At this time, the various materials are selected to follow the relations of d.ltoreq..lambda. (where .lambda. denotes the oscillation wavelength of the semiconductor laser), n.sub.2, n.sub.3
摘要:
An adaptive array antenna part receiving a plurality of transmitted signals in which sub-carrier signal components of predetermined values is suppressed before transmission in order to distinguish a plurality of transmission antenna, by means of the plurality of transmission antennas; a part calculating weight factors suppressing the sub-carrier signal components set in the predetermined values, among sub-carrier components included in a received signal; and a part applying the weight factors to the adaptive array antenna means and receiving the plurality of transmitted signals with distinguishing the same are provided.
摘要:
A transmission method for use in a multi-hop wireless communication system is provided. The system includes a source apparatus, a destination apparatus and one or more intermediate apparatuses. The system has access to at least one predetermined transmission introduction sequence and also has access to a time-frequency format for use in assigning available transmission frequency bandwidth during a discrete transmission interval, said format defining a plurality of transmission windows within such an interval. Each window occupies a different part of that interval and has a frequency bandwidth profile within said available transmission frequency bandwidth over its part of that interval. Each said window being assignable for such a transmission interval to at least one of said apparatuses for use in transmission. The method includes, when transmitting a message with a preamble in a particular transmission interval, transmitting the preamble in a first transmission window of that transmission interval. Furthermore, the method includes transmitting the transmission introduction sequence in a second transmission window of that transmission interval other than the first transmission window preferably as control information for use by at least one said intermediate apparatus or the destination apparatus.
摘要:
The present invention provides a wireless terminal apparatus, including a reception unit for receiving a multi-carrier signal generated by applying an N-point (where N is a natural number) inverse fast Fourier transform (IFFT) to a plurality of sub-carriers to which transmission information for a plurality of wireless terminal apparatuses is allocated; a fast Fourier transform unit for extracting a plurality of the sub-carriers from the multi-carrier signal; a thin-out unit, being placed at the front stage of the fast Fourier transform unit, capable of changing, from the N points, a sampling number of the multi-carrier signals which are digitalized; and a judgment unit for discerning, based on sub-carrier allocation information accompanying the multi-carrier signal, whether or not the sub-carrier of another wireless terminal apparatus overlaps with that of the wireless terminal apparatus itself in the case of changing the sampling number from the N points, and determining a sampling number for the thin-out unit.