摘要:
To provide an electroforming mold for manufacturing a multi-step structure minute component and a method for manufacturing the same, for which height control is possible and manufacturing process does not become complicated. On the upper face of a film of an electroconductive layer 2 formed on the upper face of a substrate 1, a resist 3 is formed in which a first soluble portion 3b and a first insoluble portion 3a are formed. Next, a light-absorbing body 10 is formed on the upper face of the resist, exposure and development are carried out, in addition a film of an electroconductive layer 2 is formed on the upper face thereof, and a light-absorbing body 10 and an electroconductive layer 5 on the upper face of the light-absorbing body 10 are removed by liftoff. Further, a resist is formed on the upper face thereof, in which a second soluble portion 6b and a second insoluble portion 6a are formed. Next, the first resist and the second resist are developed to remove the first soluble portion 3b and the second soluble portion 6b, thereby giving an electroforming mold 101 having an electroconductive layer on the basal part of respective steps.
摘要:
To provide an electroforming mold for manufacturing a multi-step structure minute component and a method for manufacturing the same, for which height control is possible and manufacturing process does not become complicated. On the upper face of a film of an electroconductive layer 2 formed on the upper face of a substrate 1, a resist 3 is formed in which a first soluble portion 3b and a first insoluble portion 3a are formed. Next, a light-absorbing body 10 is formed on the upper face of the resist, exposure and development are carried out, in addition a film of an electroconductive layer 2 is formed on the upper face thereof, and a light-absorbing body 10 and an electroconductive layer 5 on the upper face of the light-absorbing body 10 are removed by liftoff. Further, a resist is formed on the upper face thereof, in which a second soluble portion 6b and a second insoluble portion 6a are formed. Next, the first resist and the second resist are developed to remove the first soluble portion 3b and the second soluble portion 6b, thereby giving an electroforming mold 101 having an electroconductive layer on the basal part of respective steps.
摘要:
An electroforming mold has a first negative type photosensitive material formed on an electroconductive substrate, and a first through-hole extends through the firs photosensitive material to expose the electroconductive substrate. An electroconductive layer formed on an upper face of the first photosensitive material surrounds the first through-hole. A second negative type photosensitive material formed on an upper face of the electroconductive layer has a second through-hole that overlies and exposes both the first through-hole and a peripheral part of the electroconductive layer that surrounds the first through-hole. Because the electroconductive substrate and the electroconductive layer are separated from one another, the first and second through-holes precipitate an electroformed object independently during use of the electroforming mold resulting in a uniform electroformed object.
摘要:
To provide an electroforming mold for manufacturing a multi-step structure minute component and a method for manufacturing the same, for which height control is possible and manufacturing process does not become complicated. On the upper face of a film of an electroconductive layer 2 formed on the upper face of a substrate 1, a resist 3 is formed in which a first soluble portion 3b and a first insoluble portion 3a are formed. Next, a light-absorbing body 10 is formed on the upper face of the resist, exposure and development are carried out, in addition a film of an electroconductive layer 2 is formed on the upper face thereof, and a light-absorbing body 10 and an electroconductive layer 5 on the upper face of the light-absorbing body 10 are removed by liftoff. Further, a resist is formed on the upper face thereof, in which a second soluble portion 6b and a second insoluble portion 6a are formed. Next, the first resist and the second resist are developed to remove the first soluble portion 3b and the second soluble portion 6b, thereby giving an electroforming mold 101 having an electroconductive layer on the basal part of respective steps.
摘要:
In a method of manufacturing an electroforming mold, a first photoresist layer is formed on an upper surface of a bottom conductive film of a substrate, and the first photoresist layer is divided into a first soluble portion and a first insoluble portion. A conductive material is thermally deposited on an upper surface of the first photoresist layer within a predetermined temperature range, to thereby form an intermediate conductive film. An intermediate conductive film is patterned. A second photoresist layer is formed on an exposed upper surface of the first photoresist layer after the intermediate conductive film is removed, and on an upper surface of the intermediate conductive film remaining after patterning. The second photoresist layer is divided into a second soluble portion and a second insoluble portion. Next, the first and second photoresist layers are developed, and the first and second soluble portions are removed.
摘要:
In a method of manufacturing an electroforming mold, a first photoresist layer is formed on an upper surface of a bottom conductive film of a substrate, and the first photoresist layer is divided into a first soluble portion and a first insoluble portion. A conductive material is thermally deposited on an upper surface of the first photoresist layer within a predetermined temperature range, to thereby form an intermediate conductive film. An intermediate conductive film is patterned. A second photoresist layer is formed on an exposed upper surface of the first photoresist layer after the intermediate conductive film is removed, and on an upper surface of the intermediate conductive film remaining after patterning. The second photoresist layer is divided into a second soluble portion and a second insoluble portion. Next, the first and second photoresist layers are developed, and the first and second soluble portions are removed.
摘要:
A near-field optical head has a main surface confronting a recording medium during use of the near-field optical head. A sharpened tip is disposed on the main surface and has an optical aperture at a front end thereof. An opaque film covers the sharpened tip and has a plastically deformed portion in the vicinity of the optical aperture. The front end of the sharpened tip projects from the plastically deformed portion of the opaque film. At least one stopper is disposed in the vicinity of the sharpened tip and has a height substantially equal to a height of the sharpened tip. At least one air-bearing surface is disposed on the main surface.
摘要:
A method of manufacturing a mirror having high verticality and less surface roughness, comprising forming a mask material to the surface of a silicon substrate, applying anisotropic dry etching and anisotropic wet etching, thereby anisotropically dry etching the surface substantially parallel with the crystal face in perpendicular to the surface of the substrate and then forming a reflection surface by the anisotropic wet etching step.
摘要:
An optical microcantilever capable of reducing loss when propagating light. An optical microcantilever 10 comprises a support 1, an optical waveguide 2, a light-blocking film 3, a reflecting film 4, a pointed tip 5, a microscopic aperture 6 formed at the end of the tip 5, and a mirror 7 for reflecting propagating light H propagated from a light input/output end 8 of the optical waveguide 2 towards the microscopic aperture 6.
摘要:
In a method of producing an optical aperture, there is provided an object having a substrate, at least one conical- or pyramidal-shaped tip disposed on the substrate, at least one stopper disposed on the substrate in the vicinity of the tip and having a height substantially equal to a height of the tip, and an opaque film disposed at least on the tip. A pressing body is disposed relative to the object so that a surface of the pressing body is disposed over the tip and at least a portion of the stopper. The pressing body is then displaced to bring the surface of the pressing body into contact with the object so that a force component is directed to a front end of the tip to form an optical aperture at the front end of the tip.