摘要:
In an ultrasound probe including first and second acoustic matching layers between an acoustic lens and a piezoelectric oscillator, an electrode is arranged on a surface of a laminate element made of the first and second acoustic matching layers, the laminate element is interposed between the acoustic lens and the piezoelectric oscillator, and the piezoelectric oscillator and the electrode are electrically connected.
摘要:
An ultrasonic probe includes ultrasonic piezoelectric elements that are arranged in a first direction at predetermined intervals and transmit and receive ultrasonic waves in a second direction substantially orthogonal to the first direction. The respective ultrasonic piezoelectric elements have plural grooves, which are parallel to the first direction and do not pierce through an end face, on at least one end face of two end faces substantially orthogonal to the second direction of the respective ultrasonic piezoelectric elements. The ultrasonic waves are weighted in a third direction orthogonal to the first direction and the second direction according to shapes and arrangement of the respective plural grooves and transmitted and received. In addition, a conductive member is joined to the end face having the grooves of the respective ultrasonic piezoelectric elements along the third direction.
摘要:
In an ultrasound probe including first and second acoustic matching layers between an acoustic lens and a piezoelectric oscillator, an electrode is arranged on a surface of a laminate element made of the first and second acoustic matching layers, the laminate element is interposed between the acoustic lens and the piezoelectric oscillator, and the piezoelectric oscillator and the electrode are electrically connected.
摘要:
An ultrasonic probe includes ultrasonic piezoelectric elements that are arranged in a first direction at predetermined intervals and transmit and receive ultrasonic waves in a second direction substantially orthogonal to the first direction. The respective ultrasonic piezoelectric elements have plural grooves, which are parallel to the first direction and do not pierce through an end face, on at least one end face of two end faces substantially orthogonal to the second direction of the respective ultrasonic piezoelectric elements. The ultrasonic waves are weighted in a third direction orthogonal to the first direction and the second direction according to shapes and arrangement of the respective plural grooves and transmitted and received. In addition, a conductive member is joined to the end face having the grooves of the respective ultrasonic piezoelectric elements along the third direction.
摘要:
An ultrasound probe is provided that may improves specific desensitization of the frequency observed in the frequency characteristics and/or directional characteristics. The ultrasound probe related to this embodiment comprises an ultrasound transducer 10 and a plurality of acoustic matching layers 20 arranged in layers in the direction of irradiation irradiated from the ultrasound transducer 10, wherein, the plurality of acoustic matching layers 20 form a film and each of the adjacent acoustic impedance of longitudinal waves is substantially the same and has a different Poisson's ratio.
摘要:
An ultrasound probe is provided that may improves specific desensitization of the frequency observed in the frequency characteristics and/or directional characteristics. The ultrasound probe related to this embodiment comprises an ultrasound transducer 10 and a plurality of acoustic matching layers 20 arranged in layers in the direction of irradiation irradiated from the ultrasound transducer 10, wherein, the plurality of acoustic matching layers 20 form a film and each of the adjacent acoustic impedance of longitudinal waves is substantially the same and has a different poisson's ratio.
摘要:
An ultrasonic probe including a piezoelectric vibrator configured to transmit and receive ultrasonic waves, an acoustic lens configured to focus the ultrasonic waves and an acoustic matching layer arranged between the piezoelectric vibrator and the acoustic lens and configured to modify acoustic impedance from the piezoelectric vibrator to the acoustic lens. The acoustic matching layer includes a first region arranged at center areas along a direction of transmitting and receiving of the ultrasonic waves, a second region arranged between the first region and the piezoelectric vibrator and having a rate of change of acoustic impedance which is less than rate of change of acoustic impedance of the first region and a third region arranged between the first region and the acoustic lens, and having a rate of change of acoustic impedance which is less than a rate of change of acoustic impedance of the first region.
摘要:
An ultrasonic probe is provided which includes a piezoelectric vibrator having an earth electrode and a signal electrode on a rear surface, an acoustic matching layer disposed on a front surface side of the piezoelectric vibrator, a packing material disposed on the rear surface of the piezoelectric vibrator, and a flexible printed circuit that is interposed between the piezoelectric vibrator and the packing material to cover the entire rear surface of the piezoelectric vibrator and has an earth wiring layer and a signal wiring layer. The earth wiring layer and the signal wiring layer are exposed from a surface facing the piezoelectric vibrator of the flexible printed circuit so as to be electrically connected to the earth electrode and the signal electrode through an exposed surface of the earth wiring layer and an exposed surface of the signal wiring layer, respectively.
摘要:
According to one embodiment, an ultrasonic probe has a laminated structure of an acoustic matching layer, transducer layer with arrayed transducers, and backing layer. A transmission/reception unit transmits and receives ultrasonic waves to and from an object via the transducers. A control unit controls the transmission/reception unit to synchronize ultrasonic-wave generation by a specific transducer of the transducers with ultrasonic-wave reception by a different transducer. A phase shift detection unit detects a phase shift between an output signal from the transmission/reception unit and a reference signal, the output signal corresponding to synchronization between the ultrasonic-wave generation and the ultrasonic-wave reception.