摘要:
A novel shape memory alloy of Fe—Mn—Si system containing at least Fe, Mn, and Si wherein the alloy contains niobium carbide in the structure and is improved in that a sufficiently satisfactory shape memory effect is provided without carrying out a special treatment termed training.
摘要:
The present invention provides a thermomechanical treatment means for a Fe—Mn—Si-based shape memory alloy having specified components with Nb, C addition with simple deformation prior to aging. Such deformation treatment prior to aging is carried out in the inventions of the prior applications in a temperature range of from 500° C. to 800° C. According to the present invention, however, the deformation treatment prior to the aging treatment can be successfully carried out not at high temperature but at room temperature, if the deformation ratio is in a specified range. The technical meaning of the present invention must be clearly understood as compared to the prior art and the inventions of the prior applications because the present invention allows the treatment at room temperature while the others require troublesome treatment at high temperature so that there is significant difference therebetween. That is, according to the present invention, the remarkable improvement in shape memory property is achieved first time by a combination of specified alloy components, specified deformation ratio at room temperature, and setting of aging condition to a certain range. With the development of the present invention, it is expected that the use of shape memory alloys will be accelerated toward the practical use in a wide variety of fields.
摘要:
A NbC-added Fe—Mn—Si-based shape memory alloy is provided, showing a shape memory property even if a special treatment such as training is not performed.A Fe—Mn—Si-based shape memory alloy containing Nb and C is rolled by 10 to 30% in a temperature range of 500 to 800° C. under austenite condition, then, subjected to an aging treatment by heating in a temperature range of 400 to 1000° C. for 1 minute to 2 hours.
摘要:
To remarkably improve shape memory properties without the need for strictly controlling the composition, the present invention provides a Ti--Ni-based shape-memory alloy having a titanium content within a range of from 50 to 66 atomic %, which comprises an amorphous alloy heat-treated at a temperature of from 600 to 800 K., in which sub-nanometeric precipitates generating coherent elastic strains are formed and distributed in the bcc parent phase(B2).
摘要:
An object of the present invention is to provide an arcing horn system having a highly efficient dynamic current shutoff property including a dynamic current shutoff capability, for example, enough for the short circuit fault and other object thereof is to provide an arcing horn system capable of repeatedly maintaining the good dynamic current shutoff capability.
摘要:
An object of the present invention is to provide an arcing horn system having a highly efficient dynamic current shutoff property including a dynamic current shutoff capability, for example, enough for the short circuit fault and other object thereof is to provide an arcing horn system capable of repeatedly maintaining the good dynamic current shutoff capability. In an arcing horn system, an insulative tube 21 for surrounding a front end side of an arcing horn 11, 12 is provided and an air vent 21a communicating from a front end portion of the arcing horn 11, 12 to a front end surface of the insulative tube 21 is formed on the insulative tube 21, so that the arc jet is blown off from the air vent 21a upon the flashover in accordance with the thunder stroke. The insulative tube 21 is made of a polyamide resin. A cap 30 for covering the front end side of the insulative tube 21 is disposed so as to prevent the intrusion of the rain water into the air vent 21a.
摘要:
A vehicle may include a body frame, an engine body mounted on the body frame, an exhaust pipe connected to a cylinder head of the engine body, and a canister supported to the engine body. The exhaust pipe(s) includes a portion extending along one side surface of a cylinder block of the engine body. The canister is located between the cylinder block and the portion of the exhaust pipe(s) extending along one side surface of the cylinder block.