摘要:
The nickel electrode for alkaline secondary battery according to the present invention is obtained by applying a paste containing active material particles comprising nickel hydroxide to a conductive substrate and drying the paste on the conductive substrate. In the above-mentioned nickel electrode for alkaline secondary battery, a conductive layer comprising sodium-containing cobalt oxide is formed on a surface of the active material particles and tungsten powder and/or tungsten compound powder is added on the active material particles.
摘要:
A nickel hydroxide electrode for an alkaline storage battery comprises titanium hydroxide formed on the surface of nickel hydroxide as a main active material impregnated into pores of a porous sintered substrate. An alkaline storage battery comprises a negative electrode and the nickel hydroxide electrode as a positive electrode. The alkaline storage battery provides a high discharge capacity even if the battery is charged under a high temperature atmosphere.
摘要:
A nickel electrode for alkaline storage battery according to the present invention is formed by applying a paste containing active material particles composed of nickel hydroxide to a conductive substrate and drying said paste, wherein a conductive layer consisting of sodium-containing cobalt oxide is formed on a surface of said active material particles, and titanium powder and/or titanium compound powder is added to the surface of said active material particles, and an alkaline storage battery according to the present invention uses as its positive electrode the above-mentioned nickel electrode for alkaline storage battery.
摘要:
In a sintered nickel electrode for alkaline storage battery formed by filling nickel hydroxide as an active material into a porous sintered substrate and an alkaline storage battery using as its positive electrode the sintered nickel electrode for alkaline storage battery, tungstic acid is adhered to a surface of said nickel hydroxide as an active material.
摘要:
In an alkali storage battery comprising a positive electrode, a negative electrode and an alkali electrolyte in a battery can, .alpha.-nickel hydroxide containing manganese is used as a cathode active material for the positive electrode, and the difference between a charging potential and an oxygen gas evolution potential at the positive electrode is increased, to suppress oxygen gas evolution during the charging, and the volume percentage of the cathode active material and an anode active material is set to not less than 75% in the battery can, to obtain a large battery capacity.
摘要:
A positive-electrode active material for alkaline secondary battery according to the invention has an &agr;-Ni(OH)2 crystal structure which incorporates therein manganese and a trivalent metal other than manganese.
摘要:
Non-sintered nickel electrodes for alkaline storage batteries which can express high active material utilization efficiency not only at the time of charging at ordinary temperature but also at the time of charging in a high-temperature atmosphere are provided by using an active material powder composed of composite particles each comprising a substrate particle containing nickel hydroxide, an inner coat layer covering the substrate particle and comprising yttrium, scandium or a lanthanoid, or an yttrium, scandium or lanthanoid compound, and an outer coat layer covering the inner coat layer and comprising cobalt or a cobalt compound, or composed of composite particles each comprising a substrate particle containing nickel hydroxide, an inner coat layer covering the substrate particle and comprising cobalt or a cobalt compound, and an outer coat layer covering the inner coat layer and comprising yttrium, scandium or a lanthanoid, or an yttrium, scandium or lanthanoid compound.
摘要:
A sealed alkaline storage battery using, as a positive electrode active material, nickel oxyhydroxide including Mn as a solid-solution element and having a &ggr; ratio of 65 through 100%; a sealed alkaline storage battery using, as a positive electrode active material, nickel oxyhydroxide including as an additive or coated with a rare earth element and/or a rare earth compound in a ratio measured based on the rare earth element of 0.05 through 5 wt %; and a sealed alkaline storage battery including, as a positive electrode active material, nickel oxyhydroxide having a half-width of a peak in a lattice plane (003) in an X-ray diffraction pattern of 0.8° or more. The pressure within the battery is not largely increased for a long period of charge-discharge cycles, and hence, the electrolyte hardly leaks.
摘要:
A sealed alkaline-zinc storage battery includes a battery can, a hollow positive electrode disposed within the battery can in electrical contact therewith and containing a positive active material including nickle hydroxide, a negative electrode disposed inwardly of the positive electrode and containing a negative active material including zinc, a separator disposed between the positive and negative electrodes, a negative current collector inserted into the negative electrode, and an alkaline electrolyte filled in the battery can and impregnated into the positive electrode, negative electrode and separator. The positive electrode, negative electrode, separator, negative current collector and electrolyte together account for at least 75% of an internal volume of the battery can. The alkaline electrolyte is in the 30 to 45 mass % concentration range and has a total water content in the range of 0.5 to 0.9 g for each theoretical capacity of the negative electrode expressed as 1 Ah (ampere-hour).
摘要:
In the non-sintered nickel electrode for an alkaline storage battery according to the invention, a yttrium metal powder and/or a yttrium compound powder has been added to a particulate active material comprising composite particles each consisting of a nickel hydroxide core and a sodium-doped cobalt compound shell. Because the yttrium metal powder and/or yttrium compound powder inhibits the diffusion of cobalt into the nickel hydroxide core, the non-sintered nickel electrode of the invention exhibits a high utilization efficiency not only in an initial phase of charge-discharge cycling but over a long time of use. Moreover, because the yttrium metal powder and/or yttrium compound powder enhances the oxygen overpotential, the non-sintered nickel electrode for an alkaline storage battery according to the invention shows very satisfactory charge characteristics particularly at high temperatures.