摘要:
A nonvolatile semiconductor memory device includes a first PMOS transistor and a second PMOS transistor having a gate, the first and the second PMOS transistors being connected in series; and a first NMOS transistor and a second NMOS transistor having a gate, the first and the second NMOS transistors being connected in series; wherein the gate of the second PMOS transistor and the gate of the second NMOS transistor are commonly connected and floated.
摘要:
A nonvolatile semiconductor memory device comprises a first PMOS transistor and a second PMOS transistor having a gate, the first and the second PMOS transistors being connected in series; and a first NMOS transistor and a second NMOS transistor having a gate, the first and the second NMOS transistors being connected in series; wherein the gate of the second PMOS transistor and the gate of the second NMOS transistor are commonly connected and floated.
摘要:
An object of this invention is to provide a rewritable nonvolatile memory cell that can have a wide reading margin, and can control both a word line and a bit line by changing the level of Vcc. As a solution, a flip-flop is formed by cross (loop) connect of inverters including memory transistors that can control a threshold voltage by charge injection into the side spacer of the transistors. In the case of writing data to one memory transistor, a high voltage is supplied to a source of the memory transistor through a source line and a high voltage is supplied to a gate of the memory transistor through a load transistor of the other side inverter. In the case of erasing the written data, a high voltage is supplied to the source of the memory transistor through the source line.
摘要:
This non-volatile semiconductor storage device includes a flip-flop in which two inverters, each consisting of a load transistor and a storage transistor connected in series, are cross-connected; and two gate transistors, each respectively connected to a node of the flip-flop on a side thereof. The storage transistors of the inverters are constituted by storage transistors which can be threshold voltage controlled by injection of electrons into the neighborhood of their gates. This non-volatile semiconductor storage device further includes two bit lines, each of which is connected to a respective one of the two gate transistors; a word line which is connected to both of the gate electrodes of the two gate transistors; a first voltage supply line which is connected to the sources of the storage transistors of the inverters; and a second voltage supply line which is connected to the sources of the load transistors of the inverters.
摘要:
The present invention relates to a nonvolatile semiconductor memory, and more specifically relates to a nonvolatile semiconductor memory with increased program throughput. The present invention provides a nonvolatile semiconductor memory device with a plurality of block source lines corresponding to the memory blocks, arranged in parallel to the word lines, a plurality of global source lines arranged in perpendicular to the block source lines; and a plurality of switches for selectively connecting corresponding ones of the block source lines and the global source lines.
摘要:
The present invention relates to a nonvolatile semiconductor memory, and more specifically relates to a nonvolatile semiconductor memory with increased program throughput. The present invention provides a nonvolatile semiconductor memory device with a plurality of block source lines corresponding to the memory blocks, arranged in parallel to the word lines, a plurality of global source lines arranged in perpendicular to the block source lines; and a plurality of switches for selectively connecting corresponding ones of the block source lines and the global source lines.
摘要:
The present invention relates to a nonvolatile semiconductor memory, and more specifically relates to a nonvolatile semiconductor memory with increased program throughput. The present invention provides a nonvolatile semiconductor memory device with a plurality of block source lines corresponding to the memory blocks, arranged in parallel to the word lines, a plurality of global source lines arranged in perpendicular to the block source lines; and a plurality of switches for selectively connecting corresponding ones of the block source lines and the global source lines.
摘要:
The present invention relates to a nonvolatile semiconductor memory, and more specifically relates to a nonvolatile semiconductor memory with increased program throughput. The present invention provides a nonvolatile semiconductor memory device with a plurality of block source lines corresponding to the memory blocks, arranged in parallel to the word lines, a plurality of global source lines arranged in perpendicular to the block source lines; and a plurality of switches for selectively connecting corresponding ones of the block source lines and the global source lines.
摘要:
Output nodes (Noutn, Noutp) outputting a negative potential (VN) and a positive potential (VPS) respectively are supplied with fixed potentials by reset circuits respectively when unused. Switches (SW2, SW3) conduct when generating the negative potential, while switches (SW1, SW4) conduct when generating the positive potential. Reference potentials for the generated potentials are supplied to internal nodes N10, N20) through the switches (SW1, SW3) respectively. Poly-diode elements are employed for a voltage generation part, whereby a charge pump circuit capable of generating positive and negative voltages can be implemented without remarkably changing a fabrication method.
摘要:
Output nodes (Noutn, Noutp) outputting a negative potential (VN) and a positive potential (VPS) respectively are supplied with fixed potentials by reset circuits respectively when unused. Switches (SW2, SW3) conduct when generating the negative potential, while switches (SW1, SW4) conduct when generating the positive potential. Reference potentials for the generated potentials are supplied to internal nodes (N10, N20) through the switches (SW1, SW3) respectively. Poly-diode elements are employed for a voltage generation part, whereby a charge pump circuit capable of generating positive and negative voltages can be implemented without remarkably changing a fabrication method.