摘要:
A secondary battery electrode of the present invention has an electrode active material composed of particles with an average particle size of not more than 3 μm, and a conductive material contained in an amount of not less than 3 and less than 50 parts by weight with respect to 100 parts by weight of the electrode active material. The secondary battery electrode is capable of extracting a maximum effect of using fine particles as a constituent material.
摘要:
The disclosure relates to positive electrodes for storage cells including a ground positive electrode active material and a conductivity enhancement additive, wherein the ground positive electrode active material exhibits a specific surface area of 5 m2/g or greater, a crystallite diameter of 70 nanometers or less, and a 50% cumulative particle diameter of 1 micrometer or less. The disclosure further relates to storage batteries including positive electrodes having ground positive electrode active material, and battery modules including multiple electrically connected batteries, each battery including one or more storage cells having a positive electrode including ground positive electrode active material. The disclosure also relates to methods of fabricating storage cells and batteries with positive electrodes having ground positive electrode active material. Storage cells according to some embodiments of the invention may have applications for motor vehicle batteries, particularly for electrically powered automobiles.
摘要:
A positive electrode for a non-aqueous electrolytic secondary battery, includes: 1) a current collector; and 2) an active material layer formed on a surface of the current collector, the active material layer including: i) a positive electrode active material having an average particle diameter of less than or equal to 5 μ, ii) a conductivity assistant including: a) a particulate conductive material having: a primary particle diameter of less than or equal to 70 nm, and an aggregate size of less than 1 μm, and b) a long chain conductive material, and iii) a binder.
摘要:
The present invention provides a composite positive electrode material for a lithium ion battery, which is particularly excellent in high-rate discharge characteristics in a battery, and also provides a slurry, positive electrode and battery using the composite positive electrode material. The composite positive electrode material for a lithium ion battery contains: a positive electrode active material (a); a conductive material (b) having a primary particle diameter of 10 to 100 nm and/or a fibrous conductive material (c) having a fiber diameter of 1 nm to 1 μm; and a conductive material (d) having an aspect ratio of 2 to 50.
摘要:
Disclosed is a composite positive electrode material for lithium ion batteries, which especially enables to achieve excellent high-rate discharge characteristics in a battery. Also disclosed are a slurry, positive electrode and battery using such a composite positive electrode material. Specifically disclosed is a composite positive electrode material for lithium ion batteries, which contains a positive electrode active material (a), a conductive substance (b) having a primary particle diameter of 10-100 nm and/or a fibrous conductive substance (c) having a fiber diameter of from 1 nm to 1 μm, and a conductive substance (d) having an aspect ratio of 2-50. This composite positive electrode material for lithium ion batteries is obtained by mixing the conductive substance (d) with a composition containing the positive electrode active material (a), the conductive substance (b) and/or the conductive substance (c), which composition is obtained by dispersing the positive electrode active material (a), the conductive substance (b) and/or the conductive substance (c) in a solvent to a state where they are forcibly dispersed, and then agglutinating them.
摘要:
The positive electrode active material sintered body for a battery of the present invention is a positive electrode active material sintered body for a battery satisfying the following requirements (I) to (VII): (I) fine particles in a positive electrode active material are sintered to constitute the sintered body; (II) a peak pore diameter which provides a maximum differential pore volume value in a pore diameter range of 0.01 to 10 μm in a pore distribution is 0.3 to 5 μm; (III) a total pore volume is 0.1 to 1 cc/g; (IV) an average particle diameter is not less than the peak pore diameter and not more than 20 μm; (V) any peak, which provides a differential pore volume value of not less than 10% of the maximum differential pore volume value, is not present on a smaller pore diameter side than the peak pore diameter in the pore distribution; (VI) a BET specific surface area is 1 to 6 m2/g; and (VII) a full width at half maximum of a strongest X-ray diffraction peak is 0.13 to 0.2.
摘要:
An anode with a multi-layer structure including a first layer (21) having carbon as a main component, and a second layer (22) having lithium-ion conductivity and including a material as a main component thereof which can insert and extract lithium ions, or a multi-layer structure including a third layer (23) containing lithium in addition to the first layer and the second layer, and a lithium secondary battery including the same. The lithium secondary battery can be provided in which the battery capacity is substantially enhanced in the voltage range where the battery is actually used while maintaining the higher charge-discharge efficiency and the excellent cycle performance.
摘要:
A sintered lithium complex oxide characterized in that the sintered lithium complex oxide is constituted by sintering fine particles of a lithium complex oxide, the peak pore size giving the maximum differential pore volume is 0.80-5.00 μm, the total pore volume is 0.10-2.00 mL/g, the average particle size is not less than the above-specified peak pore size but not more than 20 μm, there is a sub-peak giving a differential pore volume not less than 10% of the maximum differential pore volume on the smaller pore size side with respect to the above-specified peak pore size, the pore size corresponding to the sub-peak is more than 0.50 μm but not more than 2.00 μm, the BET specific surface area of the sintered lithium complex oxide is 1.0-10.0 m2/g, and the half width of the maximum peak among X-ray diffraction peaks in an X-ray diffraction measurement is 0.12-0.30 deg.
摘要翻译:一种烧结锂复合氧化物,其特征在于,烧结锂复合氧化物是通过烧结锂复合氧化物的细颗粒构成的,提供最大微孔容积的峰值孔径为0.80-5.00μm,总孔体积为0.10-2.00mL / g,平均粒径不小于上述规定的峰值孔径但不大于20μm,具有不小于最大微孔容积的10%的微孔容积的次峰值在较小的 相对于上述规定的峰值孔径的孔径侧,与亚峰对应的孔径大于0.50μm且不大于2.00μm,烧结的锂复合氧化物的BET比表面积为1.0〜10.0 m 2 / g,X射线衍射测定中的X射线衍射峰中的最大峰的半值宽度为0.12-0.30度。
摘要:
The present invention provides a composite material for positive electrodes of lithium batteries, which provides a lithium battery having excellent high rate electrical discharge characteristics, has a sufficiently secured diffusion passage for Li, and has high conductivity, a process for producing the same, as well as a positive electrode and a battery using the composite material for positive electrodes of lithium batteries. The present invention relates to a composite material for positive electrodes of lithium batteries, comprising composite particles containing positive electrode active material particles and fibrous carbons, wherein the composite particles have a form in which the positive electrode active material particles are supported by the fibrous carbons.
摘要:
A positive electrode for a non-aqueous electrolyte secondary battery of the present invention has: a current collector; and a positive electrode active material layer formed on the current collector. The positive electrode active material layer contains, as positive electrode active materials, spinel lithium manganate, and a composite oxide represented by the following formula (1): LiCovNixMnyMzO2 (1) where v+x+y+z=1, M is any one selected from the group consisting of aluminum, gallium and indium, 0≦v≦0.5, 0.3≦x≦1, 0≦y≦0.5 and 0≦z≦0.1. Further, an average particle diameter of the composite oxide is larger than an average particle diameter of the spinel lithium manganate.
摘要翻译:本发明的非水电解质二次电池用正极具有:集电体; 以及形成在集电体上的正极活性物质层。 正极活性物质层含有作为正极活性物质的尖晶石锰酸锂和由下式(1)表示的复合氧化物:<?在线式描述=“在线式”末端=“铅 (ⅰ)Ni Ni x x x x O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O )其中v + x + y + z = 1,M是从由铝,镓和铟组成的组中选择的任意一种, 0 <= v <= 0.5,0.3 <= x <=1,0,0≤y≤0.5且0≤z≤0.1。 此外,复合氧化物的平均粒径大于尖晶石锰酸锂的平均粒径。