Abstract:
Method and system for providing message communications with failure detection and recovery are disclosed. At a respective node of a non-static collection of nodes forming a linear communication orbit: the node identifies, from among the non-static collection of nodes, a set of forward contacts distributed in a forward direction along the linear communication orbit; the node monitors a propagation state of a first query that has departed from the respective node to travel in the forward direction along the linear communication orbit; and upon detecting a propagation failure of the first query based on the monitoring, the node sends the first query directly to a first forward contact among the set of forward contacts to initiate a failure recovery process within at least part of a segment of the linear communication orbit between the respective node and the first forward contact of the respective node.
Abstract:
Machines in a managed network implement a set of rules that cause individual machines to directly interact with only a small number of machines in the network. Independent local actions of the individual machines collectively cause the individual machines to be self-organized into one or more communication orbits without any global control or coordination by a server or an administrator. The communication orbits are used for supporting security management, including, at a first node of the network, receiving a security management message from an upstream neighbor through a respective receiving channel from the upstream neighbor to the first node; performing one or more security management operations in accordance with the security management message received from the upstream neighbor; and forwarding the security management message to a downstream neighbor through a respective propagation channel from the first node to the downstream neighbor.
Abstract:
In one aspect, machines in a managed network implements a set of rules that cause individual machines to directly interact with only a small number of machines in the network (i.e., a local neighborhood within the network), while the independent local actions of the individual machines collectively cause the individual machines to be self-organized into one or more communication orbits without any global control or coordination by a server or an administrator. The communication orbits are used for supporting network, security and system management communications in the managed network.
Abstract:
In one aspect, machines in a managed network implements a set of rules that cause individual machines to directly interact with only a small number of machines in the network (i.e., a local neighborhood within the network), while the independent local actions of the individual machines collectively cause the individual machines to be self-organized into one or more communication orbits without any global control or coordination by a server or an administrator. The communication orbits are used for supporting network, security and system management communications in the managed network.
Abstract:
In a network of a plurality of machines and a server, the machines have self-organized into a linearly ordered sequence in accordance with a predefined order of their respective machine identifiers. The linearly ordered sequence includes one or more local segments each include a first machine followed by a sequence of second machines. A query regarding management information of a local segment is injected into the network at the first machine of the local segment. The query is forwarded along the local segment, and each machine in the local segment responds to the query by adding its own local information to any answers already accumulated in the payload of the query. A second machine in the local segment sends a report message containing aggregated management information that has been collected in the payload of the query to the server.
Abstract:
Method and system for providing message communications with failure detection and recovery are disclosed. At a respective node of a non-static collection of nodes forming a linear communication orbit: the node identifies, from among the non-static collection of nodes, a set of forward contacts distributed in a forward direction along the linear communication orbit; the node monitors a propagation state of a first query that has departed from the respective node to travel in the forward direction along the linear communication orbit; and upon detecting a propagation failure of the first query based on the monitoring, the node sends the first query directly to a first forward contact among the set of forward contacts to initiate a failure recovery process within at least part of a segment of the linear communication orbit between the respective node and the first forward contact of the respective node.
Abstract:
A data caching and distribution method, performed by a plurality of computational machines in a linear communication orbit, includes generating a data request by a first machine to request specific data, and passing the data request along a data request path that tracks the linear communication orbit until the request is received at a second machine, in the linear communication orbit, that returns the specific data in response to the data request. The method includes, at a third machine between the second machine and the first machine in the linear communication orbit, conditionally storing the specific data in a local cache of the third machine according to a data caching method.
Abstract:
In accordance with some embodiments, a computational machine having one or more processors, a local cache and memory receives from a first machine a data request that is used to request specific data. The computational machine determines whether the computational machine stores the specific data in the local cache. In accordance with a determination that the computational machine does not store the specific data in the local cache, the computational machine responds to the data request by passing the data request to a second machine and returning the specific data to the first machine when the second machine returns the specific data to the computational machine. Additionally, the computational machine determines whether to store the returned specific data in the local cache according to a data caching method.
Abstract:
In one aspect, machines in a managed network implements a set of rules that cause individual machines to directly interact with only a small number of machines in the network (i.e., a local neighborhood within the network), while the independent local actions of the individual machines collectively cause the individual machines to be self-organized into one or more communication orbits without any global control or coordination by a server or an administrator. The communication orbits are used for supporting network, security and system management communications in the managed network.
Abstract:
In one aspect, methods, system, and computer-readable media for monitoring unmanaged assets in a network having a plurality of managed machines include: at a first managed machine of the plurality of managed machines, wherein the plurality of managed machine are arranged in a linear communication orbit and have respective identifiers, and each managed machine is coupled to at least one respective neighbor by a corresponding local segment of the linear communication orbit: responding to a detection instruction for detecting unmanaged assets currently present in the network, by: scanning for live unmanaged machines within a selected portion of the network that is associated with a range of identifiers that includes identifiers between the respective identifiers of the first managed machine and a respective neighbor of the first managed machine; and generating a local report identifying one or more unmanaged machines that have been detected within the selected portion of the network.