摘要:
An instruction buffer and a method of buffering instructions. The instruction buffer including: a memory array partitioned into multiple identical memory sub-arrays arranged in sequential order from a first memory sub-array to a last memory sub-array, each memory sub-array having multiple instruction entry positions and adapted to store a different instruction of a set of concurrent instructions in a single instruction entry position of any one of the memory sub-arrays, the set of concurrent instructions arranged in sequential order from a first instruction to a last instruction
摘要:
Various systems, processes, products, and techniques may be used to manage thread transitions. In particular implementations, a system and process for managing thread transitions may include the ability to determine that a transition is to be made regarding the relative use of two data register sets and determine, based on the transition determination, whether to move thread data in at least one of the data register sets to second-level registers. The system and process may also include the ability to move the thread data from at least one data register set to second-level registers based on the move determination.
摘要:
A mechanism is provided for issuing instructions. An instruction dispatch unit receives an instruction for dispatch to one of a plurality of execution units. The instruction dispatch unit analyzes a tag register to determine whether a previous tag associated with a previous instruction has been stored in the tag register. Responsive to the previous tag associated with the previous instruction failing to be stored in the tag register, the instruction dispatch unit storing a tag corresponding to the instruction in the tag register. The instruction dispatch unit dispatches the instruction to an issue queue for issue to the one of the plurality of execution units.
摘要:
Mechanisms are provided for partial flush handling with multiple branches per instruction group. The instruction fetch unit sorts instructions into groups. A group may include a floating branch instruction and a boundary branch instruction. For each group of instructions, the instruction sequencing unit creates an entry in a global completion table (GCT), which may also be referred to herein as a group completion table. The instruction sequencing unit uses the GCT to manage completion of instructions within each outstanding group. Because each group may include up to two branches, the instruction sequencing unit may dispatch instructions beyond the first branch, i.e. the floating branch. Therefore, if the floating branch results in a misprediction, the processor performs a partial flush of that group, as well as a flush of every group younger than that group.
摘要:
A universal register rename mechanism for instructions with multiple targets using a common destination tag. For each instruction that updates multiple destinations, a single rename entry is allocated to handle all destinations associated with it. A rename entry now consists of a DTAG and a vector to indicate the type of destination(s) that is/are being updated by such a particular instruction. For example, a common DTAG can be assigned to a fixed point unit instruction (FXU) that updates general purpose register (GPR), fixed point exception register (XER), and condition code register (CR) destinations. During flush time, the DTAGs in the recovery link may be used to restore the information indicating that the youngest instruction updates a particular architected register. By using a single, universal rename structure for all types of destinations, a large saving in silicon and power can be realized without the need to sacrifice performance.
摘要:
A unified register rename mechanism for targets of different instruction types is provided in a microprocessor. The universal rename mechanism renames destinations of different instruction types using a single rename structure. Thus, an instruction that is updating a floating point register (FPR) can be renamed along with an instruction that is updating a general purpose register (GPR) or vector multimedia extensions (VMX) instructions register (VR) using the same rename structure because the number of architected states for GPR is the same as the number of architected states for FPR and VR. Each destination tag (DTAG) is assigned to one destination. A floating point instruction may be assigned to a DTAG, and then a fixed point instruction may be assigned to the next DTAG and so forth. With a universal rename mechanism, significant silicon and power can be saved by having only one rename structure for all instruction types.
摘要:
A method of restoring register mapper states for an out-of-order microprocessor. A processor maps a logical register to a physical register in a map table in response to a first instruction. Instruction sequencing logic records a second speculatively executed instruction as a most recently dispatched instruction in the map table when the second instruction maps the same logical register of the first instruction. The instruction sequencing logic sets an evictor instruction tag (ITAG) of the first instruction in the map table when the second instruction maps a same logical register of the first instruction. The instruction sequencing logic detects mispredicted speculative instructions, determines which instructions in the map table were dispatched prior to the mispredicted speculative instructions, and restores the map table to a state prior to the mispredicted speculative instructions by utilizing the evictor ITAG to restore one or more A bits in the map table data structure.
摘要:
A method of data processing includes fetching a sequence of instructions, assigning each instruction within the sequence a respective unique instruction tag, and associating a respective destination vector with each instruction. The destination vectors, which are of uniform size, identify which of a plurality of possible destinations for execution results are targeted by the associated instructions. Data dependency between instructions in the sequence is managed by reference to the destination vectors associated with the instructions.
摘要:
A processor includes an instruction fetch unit, an issue queue coupled to the instruction fetch unit, an execution unit coupled to the issue queue, and a multi-level register file including a first level register file having lower access latency and a second level register file having higher access latency. Each of the first and second level register files includes a plurality of physical registers for holding operands that is concurrently shared by a plurality of threads. The processor further includes a mapper that, at dispatch of an instruction specifying a source logical register from the instruction fetch unit to the issue queue, initiates a swap of a first operand associated with the source logical register that is in the second level register file with a second operand held in the first level register file. The issue queue, following the swap, issues the instruction to the execution unit for execution.
摘要:
A method, system, and computer program product are provided for enhancing the execution of independent loads in a processing unit. The processing unit dispatches a first set of instructions in order from a first buffer for execution. The processing unit receives updated results from the execution of the first set of instructions. The processing unit updates, in a first register, at least one register entry associated with each instruction in the first set of instructions, with the updated results. The processing unit determines if the first set of instructions from the first buffer have completed execution. Responsive to the completed execution of the first set of instructions from the first buffer, the processing unit copies the set of entries from the first register to a second register.