摘要:
A process for producing a nano-structure is provided which enables control of the pore diameters and the pore intervals by film formation conditions. The process produces a nano-structure of an aluminum-silicon-germanium mixed film containing silicon and germanium at a content of 20 to 70 atom % relative to aluminum, the mixed film being constituted of a matrix composed mainly of silicon and germanium in a composition ratio of SixGe1-x (0≦X≦1), and cylindrical portions mainly composed of aluminum having a diameter of not larger 30 nm in the matrix. In the process, the mixed film is formed at a film-forming rate of not higher than 150 nm/min.
摘要:
A process for producing a nano-structure is provided which enables control of the pore diameters and the pore intervals by film formation conditions. The process produces a nano-structure of an aluminum-silicon-germanium mixed film containing silicon and germanium at a content of 20 to 70 atom % relative to aluminum, the mixed film being constituted of a matrix composed mainly of silicon and germanium in a composition ratio of SixGe1-x (0≦X≦1), and cylindrical portions mainly composed of aluminum having a diameter of not larger 30 nm in the matrix. In the process, the mixed film is formed at a film-forming rate of not higher than 150 nm/min.
摘要翻译:提供一种制造纳米结构的方法,其能够通过成膜条件控制孔径和孔间隔。 该方法产生相对于铝含有20〜70原子%含有硅和锗的铝 - 硅 - 锗混合膜的纳米结构,该混合膜由组成为主要由硅和锗组成的基体构成 Si x 1 x x-x x(0 <= X 1 = 1)的比例,以及主要由矩阵中直径不大于30nm的铝构成的圆筒部 。 在该过程中,以不高于150nm / min的成膜速度形成混合膜。
摘要:
A process for producing a structure having a porous layer is provided. The process forms the porous layer with high thickness-controllability. The process comprises steps of preparing a layered product having, on a substrate, a first nonporous layer and a second nonporous layer different in constituting material composition from the first layer; anodizing the layered product to form pores in the first nonporous layer and the second nonporous layer; and removing the second nonporous layer having pores formed therein from the layered product.
摘要:
An anodized coating suitable for formation of highly regulated pores is provided. A method for production of a structure having pores characterized by including the steps of: forming starting points at predetermined intervals in an aluminum alloy formed on a substrate, and forming pores by anodization with the starting points as origins. In another embodiment, first and second aluminum alloy layers are anodized to form pores penetrating into the layers, wherein a diameter of a pore in the first alloy is different from a diameter of a pore in the second alloy. In an additional embodiment, a substrate is anodized to form pores, wherein the substrate contains an additive which changes the diameter within each pore, the amount of the additive continuously changing along the direction perpendicular to the substrate.
摘要:
A novel mold is provided. The mold is prepared through steps of forming a concavo-convex pattern on a substrate, forming a film by embedding a material of a composition having shape-memory in the concavo-convex pattern, and forming a mold having the concavo-convex pattern by separating the film from the concavo-convex pattern after the film formation in the film formation step.
摘要:
A process for producing a structure having a porous layer is provided. The process forms the porous layer with high thickness-controllability. The process comprises steps of preparing a layered product having, on a substrate, a first nonporous layer and a second nonporous layer different in constituting material composition from the first layer; anodizing the layered product to form pores in the first nonporous layer and the second nonporous layer; and removing the second nonporous layer having pores formed therein from the layered product.
摘要:
A novel mold is provided. The mold is prepared through steps of forming concavo-convex pattern on substrate, forming a film by embedding material of a composition having shape-memory in the concavo-convex pattern, and forming mold having the concavo-convex pattern by separating the film from the concavo-convex pattern after the film formation in the film formation step.
摘要:
An anodized coating suitable for formation of highly regulated pores is provided. A method for production of a structure having pores characterized by including the steps of: forming starting points at predetermined intervals in an aluminum alloy formed on a substrate; and forming pores by anodization with the starting points as origins.
摘要:
The present invention relates to a process for producing a structure having holes at prescribed positions. The structure is produced through steps of (A) providing an impressing member having protrusions, and a substrate, (B) forming a layer, on the substrate, from a material having a less strength than the impressing member, (C) forming depressions by impressing the impressing member on the layer corresponding to protrusions of the impressing member, (D) etching the layer to bare at least a part of the surface of the substrate, and (E) anodizing the substrate to form holes on the substrate.
摘要:
A nano structure having pore array structures in which a plurality of periodic arrays are formed adjacent to one another and a method of manufacturing the nano structure are provided. A nano structure having periodic array structures of pores formed in an anodized oxide film with a plurality of types of the periodic array structures arranged adjacent to one another is provided. Furthermore, a method of manufacturing a nano structure in which a plurality of periodic array structures formed in an anodized oxide film having different periods are arranged adjacent to one another, including (1) a step of forming pore starting points made up of a plurality of types of periodic arrays on the surface of a substrate comprised of aluminum as a principal component and (2) a step of anodizing the substrate simultaneously at the same anodization voltage is provided.