Abstract:
An integrated calibrator provides for magnitude and phase response calibration of RF receivers to produce amplitude flatness and phase linearity across the frequency range of the RF receiver by using a simple square law diode detector and a frequency-stepped two-tone source. A two-tone source generator provides two sinusoidal signals separated by a specified frequency delta about a center frequency. The center frequency is stepped across the bandwidth of the RF receiver. At each center frequency the two sinusoidal signals are input to the RF receiver and to the diode detector. The two sinusoidal signals are processed by both the receiver path and the calibrator path, and the results are used by the calibrator to generate coefficients for a correction filter in the receiver path at each of the stepped center frequencies.
Abstract:
An assembly suitable for housing electronic components can include a top shield and a bottom shield, the bottom shield having a conductive outer cover, a wall section, and a laminating portion between the conductive outer cover and the wall section. The laminating portion may include laminating material. A printed circuit board (PCB) may be positioned between the top shield and the bottom shield.
Abstract:
An assembly suitable for housing electronic components can include a top shield and a bottom shield, the bottom shield having a conductive outer cover, a wall section, and a laminating portion between the conductive outer cover and the wall section. The laminating portion may include laminating material. A printed circuit board (PCB) may be positioned between the top shield and the bottom shield.
Abstract:
An amplitude flatness and phase linearity calibration method for an RF source across a wide frequency bandwidth uses a simple square law diode detector and at least a pair of equal amplitude frequency tones. A baseband generator for the RF source generates the tones, which are applied in series to a correction filter and an up-converter to produce an output RF signal. The tones are stepped across a specified frequency bandwidth, and at each average frequency for the tones a magnitude and group delay is measured as well as a phase for the beat frequency between the tones. The resulting measurements are used to calibrate filter coefficients for the correction filter to assure amplitude flatness and phase linearity across the specified frequency bandwidth.
Abstract:
An amplitude flatness and phase linearity calibration method for an RF source across a wide frequency bandwidth uses a simple square law diode detector and at least a pair of equal amplitude frequency tones. A baseband generator for the RF source generates the tones, which are applied in series to a correction filter and an up-converter to produce an output RF signal. The tones are stepped across a specified frequency bandwidth, and at each average frequency for the tones a magnitude and group delay is measured as well as a phase for the beat frequency between the tones. The resulting measurements are used to calibrate filter coefficients for the correction filter to assure amplitude flatness and phase linearity across the specified frequency bandwidth.