摘要:
An ethylene-based polymer characterized as having a density from about 0.9 to about 0.94 grams per cubic centimeter, a molecular weight distribution (Mw/Mn) from about 4 to about 10, a melt index (I2) from about 0.05 to about 2 grams per 10 minutes, a gpcBR value greater than 0.05 as determined by a gpcBR Branching Index and a Y value greater than 0.4 is disclosed. This ethylene-based polymer is especially useful for blending with other polymers such as LLDPE. When converting the blends into film, especially shrink film, the film shows good optics, good shrink tension, high stiffness, high tensile modulus, and tensile strength. When this resin is blended at with a LLDPE on a blown film line, improvements are seen in haze, gloss, clarity, and MD and CD tear as compared to a comparative LDPE.
摘要:
An ethylene-based polymer characterized as having a density from about 0.9 to about 0.94 grams per cubic centimeter, a molecular weight distribution (Mw/Mn) from about 4 to about 10, a melt index (I2) from about 0.05 to about 2 grams per 10 minutes, a gpcBR value greater than 0.05 as determined by a gpcBR Branching Index and a Y value greater than 0.4 is disclosed. This ethylene-based polymer is especially useful for blending with other polymers such as LLDPE. When converting the blends into film, especially shrink film, the film shows good optics, good shrink tension, high stiffness, high tensile modulus, and tensile strength. When this resin is blended at with a LLDPE on a blown film line, improvements are seen in haze, gloss, clarity, and MD and CD tear as compared to a comparative LDPE.
摘要:
An ethylene-based polymer characterized as having a density from about 0.9 to about 0.94 grams per cubic centimeter, a molecular weight distribution (Mw/Mn) from about 8 to about 30, a melt index (I2) from about 0.1 to about 50 grams per 10 minutes, a gpcBR value greater than 1.4 as determined by a gpcBR Branching Index and a Y value less than about 2 is disclosed. This ethylene-based polymer is especially useful for blending with other polymers such as LLDPE. When converting the blends into film, especially blown film, bubble stability and output is increased.
摘要:
An ethylene-based polymer characterized as having a density from about 0.9 to about 0.94 grams per cubic centimeter, a molecular weight distribution (Mw/Mn) from about 8 to about 30, a melt index (I2) from about 0.1 to about 50 grams per 10 minutes, a gpcBR value greater than 1.4 as determined by a gpcBR Branching Index and a Y value less than about 2 is disclosed. This ethylene-based polymer is especially useful for blending with other polymers such as LLDPE. When converting the blends into film, especially blown film, bubble stability and output is increased.
摘要:
The invention provides an ethylene-based polymer comprising the following properties: A) a MWDconv from 7 to 10; and B) a “normalized LSF” greater than, or equal to, 9.5.
摘要:
The invention provides an ethylene-based polymer comprising the following properties: A) a MWDconv from 7 to 10; and B) a “normalized LSF” greater than, or equal to, 9.5.
摘要:
Disclosed is an ethylene-based polymer with a density from about 0.90 to about 0.94 in grams per cubic centimeter, with a molecular weight distribution (Mw/Mn) from about 2 to about 30, a melt index (I2) from about 0.1 to about 50 grams per 10 minutes, and further comprising sulfur from about 5 to about 4000 parts per million. The amount of sulfur is also determined based upon the total weight of the ethylene-based polymer. Also disclosed is process for making an ethylene-based polymer which includes the steps of splitting a process fluid for delivery into a tubular reactor; feeding an upstream process feed stream into a first reaction zone and at least one downstream process feed stream into at least one other reaction zone, where the process fluid has an average velocity of at least 10 meters per second; and initiating a free-radical polymerization reaction.
摘要:
Disclosed is an ethylene-based polymer with a density from about 0.90 to about 0.94 in grams per cubic centimeter, with a molecular weight distribution (Mw/Mn) from about 2 to about 30, a melt index (I2) from about 0.1 to about 50 grams per 10 minutes, and further comprising sulfur from about 5 to about 4000 parts per million. The amount of sulfur is also determined based upon the total weight of the ethylene-based polymer. Also disclosed is process for making an ethylene-based polymer which includes the steps of splitting a process fluid for delivery into a tubular reactor; feeding an upstream process feed stream into a first reaction zone and at least one downstream process feed stream into at least one other reaction zone, where the process fluid has an average velocity of at least 10 meters per second; and initiating a free-radical polymerization reaction.
摘要:
Disclosed is an ethylene-based polymer with a density from about 0.90 to about 0.94 in grams per cubic centimeter, with a molecular weight distribution (Mw/Mn) from about 2 to about 30, a melt index (I2) from about 0.1 to about 50 grams per 10 minutes, and further comprising sulfur from about 5 to about 4000 parts per million. The amount of sulfur is also determined based upon the total weight of the ethylene-based polymer. Also disclosed is process for making an ethylene-based polymer which includes the steps of splitting a process fluid for delivery into a tubular reactor; feeding an upstream process feed stream into a first reaction zone and at least one downstream process feed stream into at least one other reaction zone, where the process fluid has an average velocity of at least 10 meters per second; and initiating a free-radical polymerization reaction.
摘要:
A process is taught, comprising polymerizing ethylene in the presence of a catalyst to form a crystalline ethylene-based polymer having a crystallinity of at least 50% as determined by DSC Crystallinity in a first reactor or a first part of a multi-part reactor and reacting the crystalline ethylene-based polymer with additional ethylene in the presence of a free-radical initiator to form an ethylenic polymer in at least one other reactor or a later part of a multi-part reactor.