摘要:
A method of producing a composite comprising a self-supporting polycrystalline material obtained by oxidation reaction of a molten parent metal with a vapor-phase oxidant comprising infiltrating a filler exhibiting inter-particle pore volume with a parent metal under conditions which control the respective rates of said metal infiltration and said oxidation reaction.
摘要:
This invention relates generally to a novel method of manufacturing a composite body, such as a ZrB.sub.2 --ZrC--Zr (optional) composite body, by utilizing a post-treatment process and to the novel products made thereby. More particularly, the invention relates to a method of modifying a composite body comprising one or more boron-containing compounds (e.g., a boride or a boride and a carbide) which has been made by the reactive infiltration of a molten parent metal into a bed or mass containing boron carbide, and optionally one or more inert fillers, to form the body.
摘要:
A high-temperature direct-contact thermal energy storage element for use in a system for storage and retrieval of thermal energy in the range of about 400.degree. to about 3000.degree. F. The thermal energy is directly stored, without heat exchange tubes in composite latent/sensible heat thermal energy storage media utilizing the heat of fusion and high-temperature stability of alkaline metal and alkaline earth carbonates, chlorides, nitrates, nitrites, fluorides, hydroxides and sulfates and metal, metallic alloys and mixtures thereof maintained within a porous support-structure material which itself is capable of storage as sensible heat. The thermal energy storage according to the invention may be effectively utilized for storage of thermal energy derived from solar, industrial waste, process heat, and high-temperature gas reactor energy sources and retrieved for a wide variety of uses such as combustion air preheating, drying, space heating, heating of process gases, power generating heat engines and the like.
摘要:
Self-supporting bodies are produced by reactive infiltration of a parent metal into a boron nitride material typically resulting in a body comprising a boron-containing compound, a nitrogen-containing compound and metal. The mass to be infiltrated may contain one or more inert fillers admixed with the boron nitride, to produce a composite by reactive infiltration, which composite comprises a matrix which embeds the filler material. The matrix, in a composite body containing filler material, comprises one or more of metal, a boron-containing compound and a nitrogen-containing compound. The relative amounts of reactants and process conditions may be altered or controlled to yield a body containing varying volume percents of ceramic, metal and/or porosity. The mass to be infiltrated can be contained within a refractory vessel having a venting means included therein.
摘要:
The present invention relates to a novel method of manufacturing a composite body, such as a ZrB.sub.2 --ZrC--Zr composite body, by utilizing a post-treatment technique which may improve the oxidation resistance of the composite body. Moreover, the invention relates to novel products made according to the process. The novel process modifies at least a portion of a composite body by exposing said body to a source of second metal.
摘要:
This invention relates generally to a novel method of manufacturing a composite body, such as a ZrB.sub.2 -ZrC-Zr (optional) composite body, by utilizing a post-treatment process and to the novel products made thereby. More particularly, the invention relates to a method of modifying a composite body comprising one or more boron-containing compounds (e.g., a boride or a boride and a carbide) which has been made by the reactive infiltration of a molten parent metal into a bed or mass containing boron carbide, and optionally one or more inert fillers, to form the body.
摘要:
Self-supporting bodies are produced by reactive infiltration of a parent metal into a boron nitride material typically resulting in a body comprising a boron-containing compound, a nitrogen-containing compound and metal. The mass to be infiltrated may contain one or more inert fillers admixed with the boron nitride, to produce a composite by reactive infiltration, which composite comprises a matrix which embeds the filler material. The matrix, in a composite body containing filler material, comprises one or more metal, a boron-containing compound and a nitrogen-containing compound. The relative amounts of reactants and process conditions may be altered or controlled to yield a body containing varying volume percents of ceramic, metal and/or porosity. The mass to be infiltrated can be contained within a refractory vessel having a venting means included therein.
摘要:
Self-supporting bodies are produced by reactive infiltration of a parent metal into a boron carbide material which may contain one or both of a boron donor material and a carbon donor material. The reactive infiltration typically results in a composite comprising a boron-containing compound, a carbon-containing compound and residual metal, if desired. The mass to be infiltrated may contain one or more inert fillers admixed with the boron carbide material, boron-containing compound and/or carbon-containing compound. The relative amounts of reactants and process conditions may be altered or controlled to yield a body containing varying volume percents of ceramic, metal, ratios of one ceramic to another and porosity.
摘要:
A method for forming free standing ceramic bricks for use as tritium breeder material is disclosed. Aqueous solutions of sodium carbonate and potassium carbonate are mixed with an organic hydrocolloid dispersion and powdered lithium carbonate, spray dried, and ceramic bricks formed by molding in a die and firing.
摘要:
This invention relates generally to a novel method of manufacturing a composite body. More particularly, the present invention relates to a method for modifying the resultant properties of a composite body, by, for example, minimizing the amount of porosity present in the composite body. Moreover, additives, whether used alone or in combination, (1) can be admixed with the permeable mass, (2) can be mixed or alloyed with the parent metal, (3) can be placed at an interface between the parent metal and the preform or mass of filler material, (4) or any combination of the aforementioned methods, to modify properties of the resultant composite body. Particularly, additives such as VC, NbC, WC, W.sub.2 B.sub.5, TaC, ZrC, ZrB.sub.2, SiB.sub.6, SiC, MgO, Al.sub.2 O.sub.3, ZrO.sub.2, CeO.sub.2, Y.sub.2 O.sub.3, La.sub.2 O.sub.3, MgAl.sub.2 O.sub.4, HfO.sub.2, ZrSiO.sub.4, Yb.sub.2 O.sub.3 and Mo.sub.2 B.sub.5 can be combined with the permeable mass in an amount of about 5-50 percent by weight, prior to reactively infiltrating the permeable mass. Moreover, an additive may also include substantially pure elemental metals (e.g., Nb, Ti, Hf, V, Ta, Cr, Mo, Al, Cr, Si, Co and W) which may be provided by any of the methods discussed above herein.