摘要:
An inplane magnetic recording medium having high S/N and thermal stability and a reliable magnetic storage device having surface recording density of 50 megabit/mm2 or more is described. The magnetic recording medium includes magnetic layers formed on a nonmagnetic substrate with a plurality of ground layers therebetween, at least one of the ground layers formed from an alloy of a body-centered cubic structure containing Cr as a main component and B of from 2 atomic % to 12 atomic %. Main components of the magnetic layers include a lower magnetic layer containing Co and Cr of from 10 atomic % to 16 atomic %, with film thickness of from 1.5 nm to 4.5 nm, and an upper magnetic layer containing Co, coupling anti-ferromagnetically with the lower magnetic layer through nonmagnetic intermediate layers.
摘要:
An inplane magnetic recording medium having high S/N and thermal stability and a reliable magnetic storage device having surface recording density of 50 megabit/mm2 or more is described. The magnetic recording medium includes magnetic layers formed on a nonmagnetic substrate with a plurality of ground layers therebetween, at least one of the ground layers formed from an alloy of a body-centered cubic structure containing Cr as a main component and B of from 2 atomic % to 12 atomic %. Main components of the magnetic layers include a lower magnetic layer containing Co and Cr of from 10 atomic % to 16 atomic %, with film thickness of from 1.5 nm to 4.5 nm, and an upper magnetic layer containing Co, coupling anti-ferromagnetically with the lower magnetic layer through nonmagnetic intermediate layers.
摘要:
A large-capacity, low-cost, longitudinal magnetic recording medium capable of ultra-high-density recording of 70 Gigabits or more per square inch is disclosed. The longitudinal magnetic recording medium of the present invention comprises a first seed layer, a second seed layer, a first underlayer, a second underlayer, and a magnetic layer, which are formed on a nonmagnetic substrate in this order. A material containing at least Al and any one of Ru and Re is used to form the second seed layer, and a material containing at least any one of Co and Ni and one or both of Al and Ti is used to form the first underlayer. It is also possible to use Cr or a Cr alloy containing Cr and at least one element selected from the constituent element group A consisting of Ti, Mo, and W for forming the second seed layer.
摘要:
It is an object of the present invention to provide a high reliability magnetic storage apparatus capable of performing writing and reading back of high density information. The magnetic storage apparatus is so configured as to have a longitudinal magnetic recording medium including: a magnetic layer formed on a non-magnetic substrate via a plurality of underlayers; the magnetic layer including a lower magnetic layer containing Ru in an amount of not less than 3 at % to not more than 30 at %, and Cr in an amount of not less than 0 at % to not more than 18 at %, and further containing at least one of B or C in an amount of not less than 0 at % to not more than 20 at %, and an upper magnetic layer containing Co as a main component disposed thereon via a non-magnetic intermediate layer.
摘要:
A magnetic recording apparatus including a drive unit to drive the magnetic recording medium, a compound-type magnetic head, a means to move the magnetic head relative to the magnetic recording medium, and a means to process recording and retrieving signals generated by the magnetic head. The magnetic recording medium comprises a non-magnetic substrate and a magnetic layer formed thereon with three underlayers interposed inbetween. The magnetic layer is composed of a plurality of layers of Co-based alloy of hexagonal close-packed structure which are antiferromagnetically coupled to one another through a non-magnetic intermediate layer, said three underlayers including an amorphous alloy layer, a Ta layer, and a Cr-based alloy layer of body-centered cubic structure.
摘要:
An inplane magnetic recording medium having high S/N and thermal stability and a reliable magnetic storage device having surface recording density of 50 megabit/mm2 or more is described. The magnetic recording medium includes magnetic layers formed on a nonmagnetic substrate with a plurality of ground layers therebetween, at least one of the ground layers formed from an alloy of a body-centered cubic structure containing Cr as a main component and B of from 2 atomic % to 12 atomic %. Main components of the magnetic layers include a lower magnetic layer containing Co and Cr of from 10 atomic % to 16 atomic %, with film thickness of from 1.5 nm to 4.5 nm, and an upper magnetic layer containing Co, coupling anti-ferromagnetically with the lower magnetic layer through nonmagnetic intermediate layers.
摘要:
It is an object of the present invention to provide a high reliability magnetic storage apparatus capable of performing writing and reading back of high density information. The magnetic storage apparatus is so configured as to have a longitudinal magnetic recording medium including: a magnetic layer formed on a non-magnetic substrate via a plurality of underlayers; the magnetic layer including a lower magnetic layer containing Ru in an amount of not less than 3 at % to not more than 30 at %, and Cr in an amount of not less than 0 at % to not more than 18 at %, and further containing at least one of B or C in an amount of not less than 0 at % to not more than 20 at %, and an upper magnetic layer containing Co as a main component disposed thereon via a non-magnetic intermediate layer.
摘要:
In one embodiment, a magnetic recording medium comprises an underlying film, a magnetic film and a protective film formed in this order on a substrate. The magnetic film is a cobalt-base alloy film containing chromium and has a plurality of magnetic layers stacked without interposition of any non-magnetic layer. The plural magnetic layers comprise first, second and third magnetic layers. The first magnetic layer is disposed between the underlying film and the second magnetic layer. The second magnetic layer is disposed between the first magnetic layer and the third magnetic layer. The third magnetic layer is disposed between the second magnetic layer and the protective film. The concentration of chromium contained in the first magnetic layer is lower than that of chromium contained in the second magnetic layer. The thickness of the first magnetic layer is smaller than that of the second magnetic layer. The magnetic layers which overlie the first magnetic layer further contain platinum and boron. The concentration of chromium contained in the third magnetic layer is lower than that of chromium contained in the second magnetic layer.
摘要:
A magnetic recording medium having at least two magnetic layers and a non-magnetic intermediate layer held between them. The first magnetic layer (which is closer to the substrate than the non-magnetic intermediate layer) is formed from an alloy composed of Co, Pr, and Cr, with Pt content being 3-9 at %. The second magnetic layer (which is farther from the substrate than the non-magnetic intermediate layer) is formed from a Co-based alloy containing Pt, Cr, and B. The first and second magnetic layers are magnetized in the mutually antiparallel direction in the absence of an applied magnetic field.The magnetic recording medium is characterized by good thermal stability for recording bits, high recording resolution, and low media noise. It is suitable for a magnetic storage for high recording density with high reliability.
摘要:
In one embodiment, a magnetic recording medium comprises an underlying film, a magnetic film and a protective film formed in this order on a substrate. The magnetic film is a cobalt-base alloy film containing chromium and has a plurality of magnetic layers stacked without interposition of any non-magnetic layer. The plural magnetic layers comprise first, second and third magnetic layers. The first magnetic layer is disposed between the underlying film and the second magnetic layer. The second magnetic layer is disposed between the first magnetic layer and the third magnetic layer. The third magnetic layer is disposed between the second magnetic layer and the protective film. The concentration of chromium contained in the first magnetic layer is lower than that of chromium contained in the second magnetic layer. The thickness of the first magnetic layer is smaller than that of the second magnetic layer. The magnetic layers which overlie the first magnetic layer further contain platinum and boron. The concentration of chromium contained in the third magnetic layer is lower than that of chromium contained in the second magnetic layer.