Abstract:
A position detecting system detects and responds to the movement of a target through a sensing domain area of a plane. The movement causes the amount of the target that lies within a first sensing domain area of a first sensor to change. A second sensor detects a height from the plane to a sensor for enhancing accuracy of measurements from the first sensor.
Abstract:
For inductive sensing (such as for proximity switching), differential inductance readout is based on Sense/Reference resonators implemented as LC-ring oscillators, with LS/LR inductor coils and a shared (time-multiplexed) resonator capacitor. The ring oscillators include matched Lsense/Lref drivers time-multiplexed (by out enable signals), to provide Lsense/Lref resonator excitation signals to the Lsense/Lref resonators, based on resulting Lsense/Lref resonance measurements (such as of resonance state) acquired by the ring oscillators from the Lsense/Lref resonators. Differential readout data is based on the time-multiplexed Lsense/Lref resonance measurements, corresponding respectively to LS/LR coil inductances (such as based on Lsense/Lref resonator oscillation frequency). The ring oscillators can be implemented with a Schmitt trigger, converting analog resonance measurements into digital input to the Lsense/Lref drivers. Driver matching and layout matching can be used to improve accuracy. Effects of parasitic capacitance at the driver outputs can be suppressed by shorting or bootstrapping across the inactive LS/LR coil inductances.
Abstract:
For inductive sensing (such as for proximity switching), differential inductance readout is based on Sense/Reference resonators implemented as LC-ring oscillators, with LS/LR inductor coils and a shared (time-multiplexed) resonator capacitor. The ring oscillators include matched Lsense/Lref drivers time-multiplexed (by out enable signals), to provide Lsense/Lref resonator excitation signals to the Lsense/Lref resonators, based on resulting Lsense/Lref resonance measurements (such as of resonance state) acquired by the ring oscillators from the Lsense/Lref resonators. Differential readout data is based on the time-multiplexed Lsense/Lref resonance measurements, corresponding respectively to LS/LR coil inductances (such as based on Lsense/Lref resonator oscillation frequency). The ring oscillators can be implemented with a Schmitt trigger, converting analog resonance measurements into digital input to the Lsense/Lref drivers. Driver matching and layout matching can be used to improve accuracy. Effects of parasitic capacitance at the driver outputs can be suppressed by shorting or bootstrapping across the inactive LS/LR coil inductances.
Abstract:
A position detecting system detects and responds to the movement of a target through a sensing domain area of a plane. The movement causes the amount of the target that lies within a first sensing domain area of a first sensor to change. A second sensor detects a height from the plane to a sensor for enhancing accuracy of measurements from the first sensor.
Abstract:
A circuit includes a first signal swapper including a first terminal coupled to a first current source, a second terminal coupled to a second current source, a third terminal coupled to a first current terminal of a first transistor, and a fourth terminal coupled to a third current terminal of a second transistor. The first signal swapper couples the first and second terminals to the third and fourth terminals responsive to a first control signal. First and second switches couple to a gate of the first transistor. The first switch receives the input oscillation signal and the second switch receives a first reference voltage. Third and fourth switches couple to a gate of the second transistor. The third switch receives the input oscillation signal and the fourth switch receives the first reference voltage. A second signal swapper couples to the first signal swapper and to the first and second transistors.
Abstract:
A circuit includes a first signal swapper including a first terminal coupled to a first current source, a second terminal coupled to a second current source, a third terminal coupled to a first current terminal of a first transistor, and a fourth terminal coupled to a third current terminal of a second transistor. The first signal swapper couples the first and second terminals to the third and fourth terminals responsive to a first control signal. First and second switches couple to a gate of the first transistor. The first switch receives the input oscillation signal and the second switch receives a first reference voltage. Third and fourth switches couple to a gate of the second transistor. The third switch receives the input oscillation signal and the fourth switch receives the first reference voltage. A second signal swapper couples to the first signal swapper and to the first and second transistors.
Abstract:
A circuit includes a ring oscillator and a state capture register to receive a multi-bit state of the ring oscillator captured upon occurrence of an edge of input periodic signal. The circuit also includes an edge-phase detector to assert an edge detect high signal in response to a first reference clock derived from the ring oscillator being high upon occurrence of the edge of the input periodic signal and to assert an edge detect low signal in response to the first reference clock derived from the ring oscillator being low upon occurrence of the edge of the input periodic signal. A first register receives data from the state capture register upon occurrence of one of a rising or falling edge of a second clock derived from the ring oscillator.
Abstract:
Capacitive liquid level measurement uses differential out-of-phase (OoP) channel drive to counteract human body capacitance. In an example embodiment, a container assembly includes a capacitive sensor with symmetrical CHx and CHy capacitor electrodes, corresponding in height to a liquid level measurement range. A CHx driver provides a CHx excitation/drive to the CHx electrode, and a CHy driver provides OoP CHy excitation/drive to the CHy electrode that is substantially 180 degrees out-of-phase with the CHx drive. Capacitance associated with the liquid level is measured by acquiring capacitance measurements through the CHx channel (such as based on capacitive charge transfer), and converting the capacitance measurements to an analog voltage corresponding to liquid-level capacitance (which can then be converted to digital data). The capacitive sensor can be configured with SHLDx/SHLDy shields disposed behind, and driven in phase with, respective CHx/CHy electrodes.