Abstract:
Methods of forming antimicrobial resin compositions comprising silver nanoparticles are disclosed, wherein the resin compositions that are generated exhibit lower initial color, reduced color shift upon storage and reduced levels of spontaneous polymerization. Such methods generally comprise: combining a silver-containing material with a self-cure and dual-cure base resin in situ wherein the base resin does not contain a catalytic amine; and adding a catalytic resin to the mixture of the resin and silver-containing material in order to form the final cured resin. Antimicrobial polymeric materials formed by said methods are also disclosed.
Abstract:
Methods of forming antimicrobial polymeric materials comprising metallic nanoparticles are disclosed. Such methods generally comprise: combining a metal-containing material with a resin in situ; and curing the resin in the presence of a metal-containing material. Antimicrobial polymeric materials formed by said methods are also disclosed.
Abstract:
Methods of forming antimicrobial polymeric materials comprising metallic nanoparticles are disclosed. Such methods generally comprise: combining a metal-containing material with a resin in situ; and curing the resin in the presence of a metal-containing material. Antimicrobial polymeric materials formed by said methods are also disclosed.
Abstract:
Methods of forming antimicrobial resin compositions comprising silver nanoparticles are disclosed, wherein the resin compositions that are generated exhibit lower initial color, reduced color shift upon storage and reduced levels of spontaneous polymerization. Such methods generally comprise: combining a silver-containing material with a self-cure and dual-cure base resin in situ wherein the base resin does not contain a catalytic amine; and adding a catalytic resin to the mixture of the resin and silver-containing material in order to form the final cured resin. Antimicrobial polymeric materials formed by said methods are also disclosed.
Abstract:
Methods of forming antimicrobial resin compositions comprising silver nanoparticles are disclosed, wherein the resin compositions that are generated exhibit lower initial color, reduced color shift upon storage and reduced levels of spontaneous polymerization. Such methods generally comprise: combining a silver-containing material with a self-cure and dual-cure base resin in situ wherein the base resin does not contain a catalytic amine; and adding a catalytic resin to the mixture of the resin and silver-containing material in order to form the final cured resin. Antimicrobial polymeric materials formed by said methods are also disclosed.
Abstract:
Methods of forming antimicrobial resin compositions comprising silver nanoparticles are disclosed, wherein the resin compositions that are generated exhibit lower initial color, reduced color shift upon storage and reduced levels of spontaneous polymerization. Such methods generally comprise: combining a silver-containing material with a self-cure and dual-cure base resin in situ wherein the base resin does not contain a catalytic amine; and adding a catalytic resin to the mixture of the resin and silver-containing material in order to form the final cured resin. Antimicrobial polymeric materials formed by said methods are also disclosed.
Abstract:
A composite includes a filler comprising boron nitride nanosheets (BNN) and a resin. The resin includes a multifunctional oxirane epoxy phenol novolac resin (EP8370), a multifunctional acrylate dipenta erythritol hexaacrylate (DPHA), 2-(perfluorooctyl)ethyl acrylate (PFOEA), urethane dimethacrylate (UDMA), and tetryhydrofuran (THF). Additional resins for use with the composite include bisphenol A glycidyl dimethacrylate (BisGMA), urethane dimethacrylate (UDMA), and/or triethylene glycol dimethacrylate (TEGDMA) in any combination thereof.
Abstract:
Methods of forming antimicrobial resin compositions comprising silver nanoparticles are disclosed. Such methods generally comprise: combining a silver-containing material with a resin in situ in the presence of a silver-binding compound; and curing the resin. Antimicrobial polymeric resin compositions formed by said methods have a lighter color than control compositions and also display a slower release of silver ions over time.
Abstract:
Embodiments of the invention are directed to dental compositions comprising: (1) at least one cationically reactive compound; (2) at least one cationic photoinitiator; (3) at least one compound which is: an organic monomer, oligomer or polymer, said compound comprising at least one reactive oxirane, oxetane, or alkenyl ether, (4) at least one compound which is: an organic monomer, oligomer or polymer, said compound comprising at least one reactive acrylate that is capable of forming an interpenetrating network; (5) at least one free radical initiator; and (6) at least one compound which is: an organic monomer, oligomer or polymer, said compound comprising at least one reactive acrylate or methacrylate and at least one oxirane, oxetane, or alkenyl ether.
Abstract:
Methods of forming antimicrobial resin compositions comprising silver nanoparticles are disclosed. Such methods generally comprise: combining a silver-containing material with a resin in situ in the presence of a silver-binding compound; and curing the resin. Antimicrobial polymeric resin compositions formed by said methods have a lighter color than control compositions and also display a slower release of silver ions over time.