摘要:
Fabrication processes for manufacturing and connecting a semiconductor switching device are disclosed, including an embodiment for dicing a wafer into individual circuit die by sawing the interface between adjacent die with a saw blade that has an angled configuration across its width, preferably in a generally V-shape so that the adjacent die are severed from one another while simultaneously providing a beveled surface on the sides of each separated die. Another embodiment relates to the manner in which damage to a beveled side surface of the individual die can be smoothed by a chemical etching process. Another embodiment relates to the manner in which the device can be easily mounted on a printed circuit board by providing conductive lands on the printed circuit board that are coextensive with metallized electrodes on the device and which can be placed on the printed circuit board and soldered in place and a unique lead frame which can be soldered to another electrode metallization on the opposite side of the chip and the printed circuit board in a manner which substantially reduces if not eliminates harmful thermal stress and which assures secure bonding notwithstanding elevation differences between the electrode metallization and the printed circuit board the lead frame is attached to. Another embodiment relates to an output connector for interconnecting an exciter circuit product with a spark producing device wherein the output connector utilizes a configuration that includes a sealing structure that is reliable and easily installed.
摘要:
Fabrication processes for manufacturing and connecting a semiconductor switching device are disclosed, including an embodiment for dicing a wafer into individual circuit die by sawing the interface between adjacent die with a saw blade that has an angled configuration across its width, preferably in a generally V-shape so that the adjacent die are severed from one another while simultaneously providing a beveled surface on the sides of each separated die. Another embodiment relates to the manner in which damage to a beveled side surface of the individual die can be smoothed by a chemical etching process. Another embodiment relates to the manner in which the device can be easily mounted on a printed circuit board by providing conductive lands on the printed circuit board that are coextensive with metallized electrodes on the device and which can be placed on the printed circuit board and soldered in place and a unique lead frame which can be soldered to another electrode metallization on the opposite side of the chip and the printed circuit board in a manner which substantially reduces if not eliminates harmful thermal stress and which assures secure bonding notwithstanding elevation differences between the electrode metallization and the printed circuit board the lead frame is attached to. Another embodiment relates to an output connector for interconnecting an exciter circuit product with a spark producing device wherein the output connector utilizes a configuration that includes a sealing structure that is reliable and easily installed.
摘要:
An improved turbine engine ignition exciter circuit. Energy stored in an exciter tank capacitor is subsequently switched to the load (igniter plug) through a novel thyristor switching device specifically designed for pulse power applications. The switching device is designed and constructed to include, for example, a highly interdigitated cathode/gate structure. The semiconductor switching device is periodically activated by a trigger circuit which may be comprised of either electromagnetic or optoelectronic triggering circuitry to initiate discharge of energy stored in exciter tank capacitor to mating ignition lead and igniter plug. Likewise, the present invention allows new flexibility in the output PFN (Pulse Forming Network) stage, eliminating need for specialized protective output devices such as saturable output inductors. Due to considerably higher di/dt performance of the device, true high voltage output pulse networks may be utilized without damage to the semiconductor switching device. An exemplary embodiment of invention contains a novel feedback network which causes thyristor timing (trigger) and DC-DC converter circuits to compensate for varying igniter plug wear and dynamic engine combustor conditions, tailoring exciter spark rate, output voltage and energy to account for dynamic load conditions.
摘要:
A turbine engine ignition exciter circuit applies energy stored in the exciter tank capacitor to the load (igniter plug) through a thyristor type semiconductor switching device that minimizes leakage current at elevated operating temperatures. The semiconductor switching device is periodically activated by a trigger circuit to initiate discharge of energy stored in exciter tank capacitor to mating ignition lead and igniter plug. The circuit operates at a modest, for example, approximately 1.8 kV, tank circuit voltage to further reduce switching device leakage current related stresses at elevated temperatures allowing relatively long capacitor charge cycles, increased upper operating temperature capability and improved reliability. The circuit uses a low side switch circuit topology for releasing energy from said capacitor to ground whereby negative polarity energy is applied to the exciter.
摘要:
A coil and spark plug assembly includes a substantially cylindrical tube housing the coil. The tube includes an element at a first end to transmit a low voltage power source to the coil, and an attachment device at a second end for attaching the tube to an engine. The tube further includes an internal device to house a terminal end of the spark plug and a high voltage connection for connecting the coil to the spark plug. The spark plug includes a firing end, a tower shaped insulator at the terminal end opposite the firing end, and a high voltage terminal recessed within the insulator. The terminal is constructed and arranged to make an electrical connection with the high voltage connector when the terminal end of the spark plug is inserted into the second end of the tube. The spark plug further includes a first surface formed around the spark plug, wherein the surface is constructed and arranged to match a mating surface formed on the engine, and a second surface formed around the spark plug. The second surface is constructed and arranged to match a mating surface formed on the tube. The spark plug can be inserted into the second end of the tube and the tube can thereafter be inserted into an engine.