摘要:
Minimum arc interpolation is performed on velocity information distributed in three dimensions. By using complex representations of the velocity information, the interpolation may more accurately represent the angle or velocity for spatial conversion. Tri-linearly interpolating velocity information converts the information representing a three-dimensional volume to a reconstruction grid. The interpolation is performed with a graphics processing unit. Complex representations of the velocity are loaded as texture data. The graphics processing unit interpolates the data as texture fields. Look-up tables are used to determine an angle from the interpolated complex representation and/or a color value for displaying velocities associated with different spatial locations.
摘要:
An intersection of a cut plane with a proxy geometry representing a scan volume is determined with a processor. The intersection is simplified, such as identifying a quadrilateral or triangle most closely enclosing the intersection. The vertex processor of a GPU deforms a reference grid and determines Cartesian coordinates and the texture coordinates for grid points of the reference grid as a function of the input intersection. The vertex processor provides coordinates for data for subsets of cut planes. The fragment processor inputs the texture coordinates and retrieves the data from the texture memory. The data is blended. The blended subsets are then blended together in the frame buffer of the GPU.
摘要:
Images of the heart are formed by using multiple sets of ultrasound data. Each set of data is acquired and processed responsive to a different set of imaging parameters. The imaging parameter sets differ in at least one parameter, such as array position, temporal frequency response or transmit focal depth, so that the images formed using these data sets have, either laterally or axially, different spatial spectra. A set of images is formed responsive to a first imaging parameter set for a first cardiac cycle. Another set of images is formed responsive to a second imaging parameter set for a second cardiac cycle. The two sets of images are temporally aligned so that they correspond to the same set of phases of the cardiac cycle. Since the data acquisition and processing are distributed over multiple cycles of the motion, assuming regular periodic heart cycle, temporal resolution is maintained.
摘要:
An ultrasound image is morphed for perfusion assessment. Various images within a sequence of images or movie clip are mapped to one frame of reference using local warping. Nonlinear local image transformations or other warping based on local estimates of motion are used to interpolate different images to the common reference. The elastic stretching and compression of local image data results in a sequence of images where the same spatial location in each image represents the substantially same spatial location of the imaged tissue. The organ, tissue or region of interest is stationary throughout the sequence of images.
摘要:
Two-dimensional transducer arrays used for one-, two- and three-dimensional medical diagnostic ultrasonic imaging. The transducer arrays have transducer elements that are arranged in a non-rectangular, and preferably hexagonal grid. In a preferred embodiment, the transducer array has hexagonally shaped transducer elements. The transducer arrays may be fabricated as single or multiple layer structures. Sparse transducer arrays may be fabricated in a hexagonal grid by connecting selected transducer elements to the imaging system. Also, the transducer array may comprise random, vernier and spiral arrays fabricated in a hexagonal grid.
摘要:
In an ultrasound system and method, a transducer connects to an estimator for obtaining first and second blood flow parameters associated with first and second scan line directions, respectively, in a first scan plane. One beam substantially covering a cross-sectional area of a tubular structure (uniform insonification) or a plurality of beams may be used. A first area associated with the cross-section of the tubular structure is also estimated from the blood flow parameters. The process is repeated for a plurality of scan planes. A processor determines the cross-sectional area of the tubular structure perpendicular to its axis (a second area), the average velocity of flow parallel to the axis, and the volume flow as a function of the first area and the first and second blood flow parameters of all the scan planes. For real-time volume flow, the orientation of the tubular structure is determined using the second area and the first and second blood flow parameters. As measurements are made, the orientation information is used to derive the real-time volume flow.
摘要:
The depth buffer of a GPU is used to derive a surface normal or other surface parameter, avoiding or limiting computation of spatial gradients in 3D data sets and extra loading of data into the GPU. The surface parameter is used: to add shading with lighting to volume renderings of ultrasound data in real time, to angle correct velocity estimates, to adapt filtering or to correct for insonifying-angle dependent gain and compression. For border detection and segmentation, intersections with a volume oriented as a function of target structure, such as cylinders oriented relative to a vessel, are used for rendering. The intersections identify data for loading into the frame buffer for rendering.
摘要:
A medical diagnostic ultrasonic imaging system acquires image data for at least two frames at each of multiple positions, each frame identified with a respective phase of a physiological cycle. A multiphase 3-D or extended field of view data set is constructed from the image data. Then a plurality of images are generated from the multiphase data set. Each image is associated with a respective phase of the physiological cycle, and these images are displayed in sequence to a user.
摘要:
A diagnostic medical ultrasound system having an integrated invasive medical device guidance system is disclosed. The guidance system obtains image slice geometry and other imaging parameters from the ultrasound system to optimize the guidance computations and visual representations of the invasive medical device and the imaged portion of the subject. Further, the ultrasound system obtains guidance data indicating the relative location, i.e. position and/or orientation of the invasive medical device relative to the transducer and imaging plane to optimize the imaging plane and ultrasound beam characteristics to automatically optimally image both the imaged portion of the subject and the invasive medical device.
摘要:
A system and methods for measuring the volume flow of fluid in an enclosed structure with an ultrasound system is provided. Manual designation of flow angles and areas may not be necessary. Velocities along two or more different scan lines in a first scan plane are obtained to determine an angle of flow within the enclosed structure. A Doppler spectrum parameter is measured from a transmission in a second scan plane substantially perpendicular to the first scan plane. Volume flow is calculated from the flow angle and the parameter. The scan planes are associated with rotating a linear array transducer or holding a multi-dimensional transducer in place. A C-scan method with a linear transducer may also be used.